音乐指纹识别(一):音乐波形

本文介绍了音乐识别技术的基本原理,特别是通过听取音乐片段来确定歌曲名称的功能。首先,文章提到早期该功能在Shazam应用中出现,然后解释了计算机如何将音乐数字化,以44100Hz的采样率处理wav文件,存储为双声道格式。通过绘制wav文件的波形图来直观展示数据。虽然示例中使用了wav格式,但指出大部分音乐以mp3格式存在,并预告了接下来会讨论mp3的处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在大部分的手机音乐客户端中如,网易音乐,qq音乐中都有一个功能,可以通过听取一段音乐来识别这是哪一首歌曲。最早开始有这个功能是在Shazam中看见的,现在关于如何识别音乐也有较多的资料,这里通过一些简要的分析来说明听音识别歌曲是如何实现的。我们需要对计算机中的声音进行研究,获取一种能够代表这首歌曲的唯一标识,这就是我们通常说的音乐指纹。

在把音乐进行数字化后,以最原始的wav为例,计算机是使用一串数字来代表音乐的,通常来说,我们以一定的频率(44100Hz)对声音进行采样,存入文件时,以两个频道的格式进行存取。两个频道代表着左右声道。

为了更加直观,我们把wav的数据直接画出来。

这里用到了读取wav数据的库,wave 如果还没有安装 wave 可以使用命令进行安装:

pip install wave

一下是绘制一个wav文件的代码:

import wave as we
import numpy as np
import matplotlib.pyplot as plt
from scipy.fftpack import fft,ifft
import matplotlib.mlab as mlab



def wavread(path):
    wavfile =  we.open(path,"rb")
    params = wavfile.getparams()
    framesra,frameswav= params[2],params[3]
    datawav = wavfile.readframes(frameswav)
    wavfile.close()
    datause = np.fromstring(datawav,dtype = np.short)
    datause.shape = -1,2
    datause = datause.T
    time = np.arange(0, frameswav) * (1.0/framesra)
    return datause,time

def main():
    path = 'night.wav'
    wavdata,wavtime = wavread(path)
    plt.title("Night.wav's Frames")
    plt.subplot(211)
    plt.plot(wavtime, wavdata[0],color = 'green')
    plt.subplot(212)
    plt.plot(wavtime, wavdata[1])


    plt.show()
    
main()

两个声道的声音绘制成图片:

在这里插入图片描述

这里我们使用的是wav文件的声音格式,但是我们大部分的音乐是使用mp3的,我们还需要就mp3的数据进行处理,下一节讲下mp3的处理方式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

go2coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值