基于高分辨率影像的潍坊大棚遥感提取

本文介绍了基于0.6米高分辨率遥感影像,利用深度学习方法(PaddleSeg的BisenetV2网络)对潍坊地区大棚进行分布提取的过程。作者选取多样样本进行训练,最终生成了专题图,显示了大棚在潍坊的集中分布情况,尤其在西北县市。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1 背景

   朋友,当你坐在经过潍坊的火车上的时候,是否被窗外的风景震惊过?那一望无际的大棚,像一片海洋,又像一片草原,连接天际,一眼望不到边。在卫星地图上,白茫茫一片,蔚为壮观。

本文基于0.6米的高分辨率遥感影像提取潍坊的大棚分布。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协 议,转载请附上原文出处链接和本声明。 
本文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258
————————————————  
版权声明:本文为CS DN博主 「独孤尚亮dugushang liang」的原创文章,遵 循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258

2 数据

使用古戈影像的18级数据,0.6米分辨率,共三百多G。 

3 方法

方法和思路都比较简单。使用深度学习的方法,首先选典型样本,其次训练模型,最后应用模型。对于效果不好的区域,再选择一部分样本对模型进行微调。

样本的选取是十分重要的,需要兼顾春夏秋冬各个时相,兼顾不同区域、不同颜色、不同形状、不同方向、不同结构。由于时间和精力有限,本次选取的样本主要分布在寿光、青州、昌乐两个地方。

本人利用大量的业余时间勾选的一些样本如下图(节选)。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 
本文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258
———————————————— 
版权声明:本文为CSDN博主「独孤尚亮dugushangliang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 
本文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258
———————————————— 
版权声明:本文为CSDN博主「独孤尚亮dugushangliang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文 出处链接和本声明。 
本文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258
———————————————— 
版权声明:本文为CSDN博主「独孤尚亮dugushangliang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258

选择一些典型的样本后,转为和影像一样大小的栅格,将影像和样本均切分成1600*1600大小的小图,制作成数据集。训练时经过随机旋转、随机裁剪为1024大小。

使用百度的PaddleSeg语义分割框架的bisenet v2网络进行训练。这个网络比较轻量,能在6G显存的电脑运行,速度还快。经过有丰富的数据增强的几万次迭代后,差不多了保存模型。最后对全潍坊市的影像进行预测。下载影像时,将潍坊市分成了10块区域,对10块区域分别预测最后拼接起来。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA  版权协议,转载请附上原文出处链接和本声明。 
本文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258
———————————————— 
版权声明:本文为CSDN博主「独孤尚亮dugushangliang」的原创文章,遵循CC 4.0 BY-SA版 权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258

4 结果

专题图如下。可以看出,在西北的几个县市比较集中。由于时间和精力有限,本人就不多做分析了。高清的专题图可从网盘下载。
链接:https://pan.baidu.com/s/1ZhpFEn5qs6uppKvpTFFCfA 
提取码:1111

 几个局部细节图如下。放大看十分的壮观。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出 处链接和本声明。 
本文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258
———————————————— 
版权声明:本文为CSDN博主「独孤尚亮dugushangliang」的原创文 章,遵循CC 4.0 BY -SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258

版权声明:本文为 博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 
本文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258
———————————————— 
版权声明:本文为CSDN博主「独孤尚亮dugushangliang」的原创文 章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 
本文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258
———————————————— 
版权声明:本文为CSDN博主「独孤尚亮dugushangliang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_40450867/article/details/119483258

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

独孤尚亮dugushangliang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值