55-I.二叉树的深度
输入一棵二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度为树的深度。
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回它的最大深度 3 。
DFS
class Solution {
public:
int maxDepth(TreeNode* root) {
if(!root) return 0;
return max(maxDepth(root->left)+1,maxDepth(root->right)+1);
}
};
BFS
class Solution {
public:
int maxDepth(TreeNode* root) {
if(!root) return 0;
queue<TreeNode*> q;
q.push(root);
int count=0;
while(q.size())
{
int size=q.size();
for(int i=0;i<size;i++)
{
TreeNode* rt=q.front();
q.pop();
if(rt->left) q.push(rt->left);
if(rt->right) q.push(rt->right);
}
count++;
}
return count;
}
};
###55-II.平衡二叉树
输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true
先序遍历
- 通过比较某子树的左右子树的深度差 abs(depth(root.left) - depth(root.right)) <= 1 是否成立,来判断某子树是否是二叉平衡树。若所有子树都平衡,则此树平衡。
class Solution {
public:
bool isBalanced(TreeNode* root) {
if(!root) return true;
int left = maxDepth(root->left);
int right = maxDepth(root->right);
if(abs(left-right)>1) return false;
return isBalanced(root->left) && isBalanced(root->right);
}
int maxDepth(TreeNode* root) {
if(!root) return 0;
return max(maxDepth(root->left)+1,maxDepth(root->right)+1);
}
};
后序遍历
class Solution {
public:
bool ans = true;
bool isBalanced(TreeNode* root) {
dfs(root);
return ans;
}
int dfs(TreeNode* root){
if(!root) return 0;
int left = dfs(root->left), right = dfs(root->right);
if(abs(left - right) > 1) ans = false;
return max(left, right) + 1;
}
};