摘要
提出了一种多模态的深度表示学习结构,通过结合蛋白质的物理化学特征和蛋白质-蛋白质相互作用(PPI)网络中的图拓扑特征
不仅考虑到蛋白质序列信息,而且可以识别PPI网络中每个蛋白质节点的拓扑表示
背景
传统的机器学习技术缺乏发现隐藏关联和从输入的复杂数据中提取判别特征的能力。
从这些蛋白质网络的图拓扑中发掘多样的生物模式是理解细胞及其结构蛋白质的功能的基础。当将深度学习技术应用于生物网络分析时,这些模式包括拓扑相似性,如一阶相似性、二阶相似性和从蛋白质序列中提取的同源性特征。
本文保留不同的模式来获取蛋白质序列相似性和拓扑接近性,利用了来自蛋白质的关系和物理化学信息,并使用晚期特征融合技术(决策层?)
集成出特征,用于下游分类
方法
蛋白质序列预处理
需要统一特征维数尺寸
方法是从由堆叠氨基酸组成的蛋白质残基中提取物理化学信息,并将其转化为等长度的数值向量。
通过获取蛋白质肽的固有信息,尽可能地保持结构的蛋白质残基信息,再分别通过四种方法将不同长度的蛋白质序列转换为固定长度的数值向量
无监督
先通过ifeature的api[14]将上面固定长度的向量统一长度,送入无监督的自编码器
通过随机游走考察根据元路径构造出的网络结构化数据
监督
融合上述得到的特征