读《Multimodal deep representation learning for protein interaction identification and protein family》

摘要

提出了一种多模态的深度表示学习结构,通过结合蛋白质的物理化学特征和蛋白质-蛋白质相互作用(PPI)网络中的图拓扑特征
不仅考虑到蛋白质序列信息,而且可以识别PPI网络中每个蛋白质节点的拓扑表示

背景

传统的机器学习技术缺乏发现隐藏关联和从输入的复杂数据中提取判别特征的能力。

从这些蛋白质网络的图拓扑中发掘多样的生物模式是理解细胞及其结构蛋白质的功能的基础。当将深度学习技术应用于生物网络分析时,这些模式包括拓扑相似性,如一阶相似性、二阶相似性和从蛋白质序列中提取的同源性特征。

本文保留不同的模式来获取蛋白质序列相似性和拓扑接近性,利用了来自蛋白质的关系和物理化学信息,并使用晚期特征融合技术(决策层?)集成出特征,用于下游分类

方法

蛋白质序列预处理

需要统一特征维数尺寸
方法是从由堆叠氨基酸组成的蛋白质残基中提取物理化学信息,并将其转化为等长度的数值向量。
通过获取蛋白质肽的固有信息,尽可能地保持结构的蛋白质残基信息,再分别通过四种方法将不同长度的蛋白质序列转换为固定长度的数值向量

无监督

先通过ifeature的api[14]将上面固定长度的向量统一长度,送入无监督的自编码器

通过随机游走考察根据元路径构造出的网络结构化数据

监督

融合上述得到的特征

交通流量预测是城市交通管理和规划的重要问题之一。传统的方法通常使用统计模型和时间序列分析来进行预测,但它们往往无法捕捉到交通流量数据中的复杂模式和非线性关系。因此,本文提出了一种基于多模态深度学习的混合方法来进行交通流量预测。 该方法将多模态数据(如历史交通流量数据、气象数据、节假日信息等)作为输入,利用深度神经网络来学习数据之间的复杂关系。深度神经网络可以自动提取特征,并通过多层次的非线性变换来捕捉到不同模态数据之间的依赖关系。 具体而言,该方法包括两个主要步骤:模态学习和流量预测。在模态学习阶段,使用深度神经网络对每个模态数据进行特征提取和表示学习,从而获得高维的特征表示。在流量预测阶段,利用这些特征表示来训练一个回归模型来进行交通流量的预测。可以使用不同的深度学习模型,如卷积神经网络和循环神经网络,来处理不同类型的输入数据。 该方法在实际的交通流量数据集上进行了实验,并与传统的方法进行了比较。实验结果表明,该混合方法在预测准确性和稳定性方面具有明显的优势。它能够更好地预测交通流量的变化趋势和峰值时段,并且具有较低的误差率。 综上所述,这种基于多模态深度学习的混合方法为交通流量预测提供了一种创新的解决方案。它可以更好地挖掘和利用不同模态数据之间的关联性,从而提高预测准确性,为城市交通管理和规划提供有价值的决策支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值