剑指offer11 -- 连续子数组的最大和

 

题目描述:

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1

问题思路:

使用动态规划的想法,每一步考虑前面的总和,如果总和小于0了就从新开始计算

解题:

# -*- coding:utf-8 -*-
class Solution:
    def FindGreatestSumOfSubArray(self, array):
        # write code here
        max_sum = float('-inf')
        curr_sum = 0
        for i in range(len(array)):
            if curr_sum < 0:
                curr_sum = 0
            curr_sum += array[i]
            max_sum = max(max_sum, curr_sum)
        return max_sum

这种写法是更加标准的动态规划的解法。 

# -*- coding:utf-8 -*-
class Solution:
    def FindGreatestSumOfSubArray(self, array):
        n = len(array)
        sum_list = [0] * n
        for i in range(n):
            if i == 0:
                sum_list[i] = array[i]
            elif sum_list[i-1] <= 0:
                sum_list[i] = array[i]
            else:
                sum_list[i] = array[i] + sum_list[i-1]
        return max(sum_list)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值