题目描述:
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1
问题思路:
使用动态规划的想法,每一步考虑前面的总和,如果总和小于0了就从新开始计算
解题:
# -*- coding:utf-8 -*-
class Solution:
def FindGreatestSumOfSubArray(self, array):
# write code here
max_sum = float('-inf')
curr_sum = 0
for i in range(len(array)):
if curr_sum < 0:
curr_sum = 0
curr_sum += array[i]
max_sum = max(max_sum, curr_sum)
return max_sum
这种写法是更加标准的动态规划的解法。
# -*- coding:utf-8 -*-
class Solution:
def FindGreatestSumOfSubArray(self, array):
n = len(array)
sum_list = [0] * n
for i in range(n):
if i == 0:
sum_list[i] = array[i]
elif sum_list[i-1] <= 0:
sum_list[i] = array[i]
else:
sum_list[i] = array[i] + sum_list[i-1]
return max(sum_list)