高德的拥堵指数

本文详细解析了高德地图的拥堵指数概念及其分级标准。拥堵指数反映了实际出行时间与理想状态下的时间比值,用于评估城市的交通拥堵状况。通过具体案例分析,帮助读者更好地理解这一指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、主要指高德的拥堵指数。

2、拥堵指数,应该说拥堵延时指数,看图:

在这里插入图片描述
说明:有4个等级:通畅、缓行、拥堵和严重拥堵;

在这里插入图片描述
分析:说明1.4和1.5是分界线;
在这里插入图片描述分析:说明1.9和2.0是分界线

整理一下:通畅(绿色):1.4(含)以下;缓行(黄色):1.5—1.9;
拥堵(红色):2.0—3.9? 严重拥堵(深红色):4.0以上

3、看定义:


作为衡量拥堵的主要指标,“拥堵延时指数”指的是居民平均一次出行实际旅行时间与自由流速度(不受上下游条件影响的交通流运行速度)状态下旅行时间的比值,这是判断城市拥堵程度的评价指标。


4、看解释: 贵阳为例子

贵阳的“高峰拥堵延时指数”为1.808,这意味着贵阳市民在高峰时段出行,比在畅通状态下的耗时要多出1.8倍。而在拥堵最为严重的晚高峰,“拥堵延时指数”更是达到了2.08。这就是说,如果你下班的路程在畅通状态下要走1小时,那晚高峰则需要走2小时。

内容概要:本文档《信息安全领域实战项目.docx》详细介绍了网络安全渗透测试的具体步骤和实战案例。文档从信息收集开始,逐步深入到漏洞验证、漏洞攻击和权限提升等环节。首先,通过使用工具如FOFA进行资产收集,识别出目标服务器开放的多个端口,并进一步通过后台扫描工具发现潜在的敏感文件。接着,针对发现的Grafana任意文件读取漏洞(CVE-2021-43798)和ActiveMQ任意文件上传漏洞(CVE-2016-3088),分别进行了详细的漏洞验证与攻击演示,包括具体的payload构造、利用方式及攻击效果展示。最后,探讨了CVE-2021-4034 Linux polkit提权漏洞的应用场景及其利用方法。此外,文档还涵盖了政务智慧信息系统安全建设项目的背景、目标、建设内容以及相关的人才需求分析。 适合人群:具备一定网络安全基础,尤其是对渗透测试感兴趣的初学者或中级技术人员。 使用场景及目标:①帮助读者理解并掌握从信息收集到漏洞利用的完整渗透测试流程;②提供实际操作案例,使读者能够学习如何识别和利用常见的Web应用漏洞;③培养读者在面对真实世界的安全问题时,能够运用所学知识进行有效的分析和解决。 阅读建议:由于文档内容涉及较多的技术细节和实战操作,建议读者在阅读过程中结合实际环境进行练习,并参考官方文档或其他权威资料加深理解。同时,注意合法合规地使用所学技能,确保所有活动都在授权范围内进行。
内容概要:本文详细介绍了FracPredictor这一基于深度学习的裂缝预测工具及其应用。首先探讨了数据处理部分,如利用滑窗处理时序+空间特征混合体的方法,以及如何将岩石力学数据转换为适合神经网络的格式。接着深入剖析了模型架构,包括时空双流网络、注意力机制用于跨模态融合、HybridResBlock自定义层等创新设计。此外,文章还分享了训练技巧,如渐进式学习率衰减、CosineAnnealingWarmRestarts调度器的应用。对于可视化方面,则推荐使用PyVista进行三维渲染,以直观展示裂缝扩展过程。文中还提到了一些实用的小技巧,如数据预处理中的自动标准化、配置文件参数调整、以及针对特定地质条件的优化措施。最后,通过多个实际案例展示了FracPredictor在提高预测准确性、降低计成本方面的优势。 适合人群:从事石油工程、地质勘探领域的研究人员和技术人员,尤其是对裂缝建模与压裂模拟感兴趣的从业者。 使用场景及目标:适用于需要高效、精准地进行裂缝预测和压裂模拟的工程项目。主要目标是帮助用户掌握FracPredictor的工作原理,学会从数据准备到结果可视化的完整流程,从而优化压裂方案,减少工程风险。 其他说明:文章不仅提供了详细的代码示例,还附带了丰富的实战经验和注意事项,有助于读者更好地理解和应用这项新技术。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值