PyTorch 中的Normalize

该博客介绍了如何使用PyTorch的`transforms.Normalize`对图像数据进行归一化处理,通过计算通道均值和方差,然后应用公式(output[channel] = (input[channel] - mean[channel]) / std[channel])进行转换。示例代码展示了从读取图像到应用归一化,再到反归一化的完整过程。
摘要由CSDN通过智能技术生成

PyTorch 中的Normalize

公式为:

output[channel] = (input[channel] - mean[channel]) / std[channel]

实例:

import numpy as np 
import cv2.cv2 as cv 
import os
import torch
from torch import random
from torchvision import transforms
import torchvision
src = cv.imread(r'code/test.jpg')
cv.imshow('src', src)
src = torch.from_numpy(src).float()/256

mean_b, var_b = torch.mean(src[:, :, 0]), torch.var(src[:, :, 0])
mean_g, var_g = torch.mean(src[:, :, 1]), torch.var(src[:, :, 1])
mean_r, var_r = torch.mean(src[:, :, 2]), torch.var(src[:, :, 2])
src = torch.swapdims(src, 0, 2)
src = torch.swapdims(src, 1, 2)
transform = transforms.Compose([
    transforms.Normalize((mean_b, mean_g, mean_r), (var_b, var_g, var_r))
])
dst = transform(src)
dst = torch.swapdims(dst, 0, 2)
dst = torch.swapdims(dst, 0, 1).numpy()
dst = (dst/(np.max(dst) - np.min(dst)) + 1)/2
print(dst)
cv.imshow('test', dst)
cv.waitKey(0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值