《数学辞海》编辑委员会. 数学辞海 第四卷.
ISBN: 978-7-5440-2400-6
《数学辞海》的第四卷主要收录了几个内容相对较少的子学科,凑成一卷。大致上这一卷的内容可以分为数理逻辑、计算数学、概率论、统计学等几个部分。这几部分相互之间的关系并不是很明显,因而可能单纯是出于平均各卷篇幅的原因凑到一起的。
之前几卷的读书小结中介绍过,数理逻辑是现代数学的基础。它通过代数方法研究逻辑,在内容上包含几种形式化的语言和几个关于数学与逻辑本质的理论。在几种形式化语言中,最常用的实际上就是一阶谓词逻辑的语言。理论上任何一个清晰准确的命题都能转换为一阶谓词语言中的命题,任何一个有效可靠的证明都能书写为一阶谓词语言的序列。标准的一阶谓词语言实际上给数学提供了一种准确可靠的世界语。在这样坚实的基础上,现代数学的严谨可靠才得以保证。
理论方面,数理逻辑一般包含四个理论:模型论、递归论、集合论、证明论。模型论研究逻辑语言模型。它主要探讨形式证明能否确保语义为真的问题。一阶谓词语言就是一种逻辑语言模型,所以模型论最重要的一个结论就是一阶谓词逻辑具有可靠性。递归论研究递归过程。而所谓的“递归”实际上刻画的就是直观上的计算。因而递归论实际上研究的是计算的可行性问题。由于形式证明过程本身就是一种运算,递归论也可以看作是给形式证明的可行性提供论证。集合论一般视为“公理集合论”的简称。仅凭一阶谓词语言自身是无法推导出自然数及自然数的性质的,因而需要一组额外的假设用于推导出基本的自然数性质、代数定理等数学基础。公理集合论的作用就是提供这一组基础。一般在学习公理集合论时会学 ZFC 公理系统,但在研究公理集合论时人们会探究 ZFC 以外的各种非标准系统。证明论相比于前三论来说稍微特殊一点,因为它没有一个特别明确的研究范畴。笼统来说它研究证明过程,包括不完备性、二阶逻辑、直觉一阶逻辑、无穷逻辑等方面的内容。
计算数学是数学中的工程领域,但工程领域本身也有工程的理论,这些工程领域的理论就构成了计算数学的主要内容。理论上能通过公式推导唯一确定的解称为解析解,但在很多数学问题中解析解是不存在的(或者求解代价太大),只能估计近似解。计算数学的任务就是用尽量小的代价给出尽量精准的近似解(也称数值解)。不过虽然这个领域的任务非常清晰,但其方法多种多样。以至于求数值解的方法实际上散见于数学的各个分支当中。一般所说的计算数学课程其实主要讲的是函数极值和微分方程的近似解法。
概率论和统计学的关系值得好好聊一聊。虽然很多偷懒的教材会把概率论和统计学混为一谈,但概率论和统计学并不是一回事。
先来聊概率论,概率论是数学的一个理论。现代的概率论称为“测度概率论”。在测度概率论中,概率被严格定义为一种满足特殊条件的实值测度。概率论则研究这种测度的性质(如各种大数定律和概率分布)。需要注意的是,虽然概率论常常被用来建模随机事件,但概率本身不具有不确定性。举个最浅显的例子来说,一枚均匀硬币每次抛出的结果是随机的,但正面朝上的概率一直是确定的二分之一。关于“随机性”这一性质本身的刻画实际上是递归论的前沿领域。有兴趣的话可以找来相关的书读一读。
再来说说统计,它是一门讲处理数据和归纳特征的学科。而且统计学是否能属于数学,也存在不同说法。从某些角度来说,统计实际是一种和逻辑推理对等的方法。统计和逻辑就像物理一样,它们运用数学,但不是数学的一部分。现代统计学运用概率论的模型来表述自己的方法,称为数理统计。但它本身不能和概率论划上等号。一般来说数理统计会包括采样方法、估计方法、假设检验等实用内容。除了这些形而下的方法,统计和逻辑一样还存在一些形而上的争论——例如频率学派和贝叶斯学派的争论实质上就是一种哲学层面的问题,而不是数学层面的问题。
其实在本卷最后,还有一些对数学在经济、生物、物理等学科中的应用的介绍。个人认为这些内容分别是经济学、生物学、物理学等学科的知识而不是数学知识,因而在此不做讨论。
求点赞,求收藏,求分享
欢迎关注我的公众号,微信搜索:知则