心电信号属于随机信号,且幅值较低,采集之后需要经过放大器放大才能进行波形观测。采集过程中的主要噪声源有工频干扰、基线漂移、肌电干扰和随机噪声 。对这些干扰进行分析后,选择合适的方法去除这些噪声,才能得到相对真实的心电信号,为下一步的诊断做准备。
1)工频干扰
我国五十赫兹交流电的使用会产生五十赫兹的工频干扰,在采集心电信号时会受到这种噪声的影响。如图1所示,波形上的细小波纹就是工频干扰。这种细小的影响容易和疾病产生的心电波形小切口发生混淆,因此有必要进行滤除。
2) 基线漂移
病人的呼吸、电极的滑动等因素对心电信号造成的干扰称为基线漂移。如图3-5所示,随着时间的增长,心电信号出现平稳下滑的现象。若干扰严重,会出现短时间内剧烈上滑或下滑的现状,对真实心电信号的幅值与形态产生严重干扰。其峰值幅度会随时间一直变化,频率一般低于1Hz。
3)肌电干扰
心电采集过程中,很难避免出现人体肌肉运动并产生肌电电势,这种电势变化出现在心电信号中就会对其造成肌电干扰。肌电干扰的频率属于高频,一般在5-2000Hz,与心电信号的0.05-100Hz有频率重叠。其在正常心电信号上会表现为毫无规律的细小的高频波动,容易与疾病带来的小波动产生视觉混淆,从而导致心电信号诊断有误。
二.小波阈值方法去噪
自己也试过很多去噪方法,下面列出来的是小波阈值去噪方法,一个经过几次尝试觉得简单有效的方法。
小波变换主要是对小波函数进行尺度伸缩还有时间位移,实现对非平稳信号的多尺度时频的局部化分析,可以在信号的高频处或成分突变处完成时间上的细化,在低频处或成分慢变处实现频率上的细化。
阈值处理主要包括两部分,一个是阈值的选取,还有一个是阈值函数的选取。
clc;clear all;
load('Nb103.mat');
E=Nb(3,:);%导入我的信号,是一个包含300个点的正常心电信号片段
fs=360;
%小波分解
[c,l]=wavedec(E,4,'db3');%选择db3小波基函数,分解为4层
%利用小波'db5'从分解系数[C,L]中提取第N层近似系数(approximation coefficient,cA)和细节系数(detail coefficient,cD)
ca4=appcoef(c,l,'db3',4);
cd1=detcoef(c,l,1);
cd2=detcoef(c,l,2);
cd3=detcoef(c,l,3);
cd4=detcoef(c,l,4);
%使用stein的无偏似然估计原理进行选择各层的阈值
%'rigrsure’为无偏似然估计阈值类型
thr1=thselect(cd1,'rigrsure');
thr2=thselect(cd2,'rigrsure');
thr3=thselect(cd3,'rigrsure');
thr4=thselect(cd4,'rigrsure');
%各层的阈值
TR=[thr1,thr2,thr3,thr4];
%'s'为软阈值;'h'硬阈值。
SORH='s';
%---------去噪----------------
%XC为去噪后信号
%[CXC,LXC]为 小波分解结构
%PERF0和PERF2是恢复和压缩的范数百分比。
%'lvd'为允许设置各层的阈值,
%'gbl'为固定阈值。
%3为阈值的长度
[XC,CXC,LXC,PERF0,PERF2]=wdencmp('lvd',E,'db3',4,TR,SORH);
%对比原始信号和除噪后的信号
plot(E,'b'); hold on;%蓝色为原始信号
plot(XC,'r');%红色为滤波后信号
xlabel('采样点');
ylabel('幅值/mV');
画图观察结果: