点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(正在更新!)

章节内容

上节我们完成了如下的内容:

  • Spark Streaming DStream 有状态转换
  • DStream 有状态转换 案例

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_大数据

基础介绍

针对不同的Spark、Kafka版本,集成处理数据的方式有两种:

  • Receiver Approach
  • Direct Approach

对应的版本:

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_scala_02


版本的发展:

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_scala_03

Kafka-08 接口

Receiver based Approach

基于 Receiver 的方式使用 Kafka 旧版本消费者高阶 API 实现。
对于所有的 Receiver,通过 Kafka 接收的数据被存储于 Spark 的 Executors 上,底层是写入 BlockManager中,默认200ms生成一个block(spark.streaming.blockInterval)
然后由SparkStreaming提交的Job构建BlockRDD,最终以SparkCore任务的形式运行。
对应Receiver方式,有以下几点需要注意:

  • Receiver 作为一个常驻线程调度到Executor上运行,占用一个CPU
  • Receiver 个数由 KafkaUtils.createStream 调用次数决定,一次一个Receiver
  • Kafka 中的Topic分区并不能关联产生在 SparkStreaming中的RDD分区,增加在KafkaUtils.createStream() 中的指定的Topic分区数,仅仅增加了单个Receiver消费的Topic的线程数,它不会增加处理数据中的并行的Spark的数量。
  • Receiver默认200ms生成一个Block,可根据数量大小调整Block生成周期,一个Block对应RDD一个分区
  • Receiver接收的数据会放入到BlockManager,每个Executor都会有一个BlockManager实例,由于数据本地性,那些存在 Receiver的Executor会被调度执行更多的Task,就会导致某些Executor比较空闲
  • 默认情况下,Receiver是可能丢数据的,可以通过设置spark.streaming.receiver.writeAheadLog.enable为true开启预写日志机制,将数据先写入一个可靠的分布式文件系统(HDFS),确保数据不丢失,但会损失一定的性能

Kafka-08接口(Receiver方式)

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_分布式_04

  • Offset 保存在ZK中,系统管理
  • 对应Kafka版本 0.8.2.1 +
  • 接口底层实现使用Kafka旧版消费者 高阶API
  • DStream底层实现为BlockRDD

Kafka-08接口(Receiver with WAL)

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_分布式_05

  • 增强了故障恢复的能力
  • 接收的数据与Driver的元数据保存到HDFS
  • 增加了流式应用处理的延迟

Direct Approach

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_分布式_06


Direct Approach 是 Spark Streaming 不使用 Receiver 集成 Kafka 的方式,在企业生产环境中使用较多,相较于 Receiver,有以下特点:

  • 不使用 Receiver,减少不必要的CPU占用,减少了 Receiver接收数据写入BlockManager,然后运行时再通过 BlockId、网络传输、磁盘读取等来获取数据的整个过程,提升了效率,无需WAL,进一步减少磁盘IO
  • Direct方式生的RDD是KafkaRDD,它的分区数与Kafka分区数保持一致,便于把控并行度。注意:在Shuffle 或 Repartition 操作后生成的 RDD,这种对应关系会失效
  • 可以手动维护 Offset,实现 Exactly Once 语义

Kafka-10 接口

Spark Streaming 与 Kafka 0.10整合,和 0.8版本的Direct方式很像,Kafka的分区和Spark的RDD分区是一一对应的,可以获取 Offsets 和 元数据,API使用起来没有显著的区别。

添加依赖

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
  <version>${spark.version}</version>
</dependency>
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

不要手动添加 org.apache.kafka相关的依赖,如 kafka-clients,spark-streaming-kafka-0-10已经包含相关的依赖了,不同的版本会有不同程度的不兼容。

使用 kafka010接口从Kafka中获取数据:

  • Kafka集群
  • Kafka生产者发送数据
  • Spark Streaming 程序接收数

KafkaProducer

编写代码

package icu.wzk

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.codehaus.jackson.map.ser.std.StringSerializer

import java.util.Properties

object KafkaProducerTest {

  def main(args: Array[String]): Unit = {
    // 定义 Kafka 参数
    val brokers = "h121.wzk.icu:9092"
    val topic = "topic_test"
    val prop = new Properties()
    prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
    prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer])
    prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, classOf[StringSerializer])

    // KafkaProducer
    val producer = new KafkaProducer[String, String](prop)
    for (i <- 1 to 1000) {
      val msg = new ProducerRecord[String, String](topic, i.toString, i.toString)
      // 发送消息
      producer.send(msg)
      println(s"i = $i")
      Thread.sleep(100)
    }
    producer.close()
  }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.

运行测试

i = 493
i = 494
i = 495
i = 496
i = 497
i = 498
i = 499
i = 500
i = 501
i = 502
i = 503
i = 504
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.

运行过程截图为:

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_spark_07

查看Kafka

我们在服务器上查看当前Kafka中的队列信息:

kafka-topics.sh --list --zookeeper h121.wzk.icu:2181
  • 1.

可以看到队列已经加入了,spark_streaming_test01:

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_scala_08

KafkaDStream

编写代码

package icu.wzk

import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object KafkaDStream1 {

  def main(args: Array[String]): Unit = {
    Logger.getLogger("org").setLevel(Level.ERROR)
    val conf = new SparkConf()
      .setAppName("KafkaDStream1")
      .setMaster("local[*]")

    val ssc = new StreamingContext(conf, Seconds(2))
    val kafkaParams: Map[String, Object] = getKafkaConsumerParameters("wzkicu")
    val topics: Array[String] = Array("spark_streaming_test01")

    // 从 Kafka 中获取数据
    val dstream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils
      .createDirectStream(
        ssc,
        LocationStrategies.PreferConsistent,
        ConsumerStrategies.Subscribe[String, String](topics, kafkaParams))
    // dstream输出
    dstream.foreachRDD {
      (rdd, time) => if (!rdd.isEmpty()) {
        println(s"========== rdd.count = ${rdd.count()}, time = $time ============")
      }
    }

    ssc.start()
    ssc.awaitTermination()
  }

  private def getKafkaConsumerParameters(groupId: String): Map[String, Object] = {
    Map[String, Object](
      ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "h121.wzk.icu:9092",
      ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
      ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
      ConsumerConfig.GROUP_ID_CONFIG -> groupId,
      ConsumerConfig.AUTO_OFFSET_RESET_CONFIG -> "earliest",
      ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG -> (false: java.lang.Boolean)
    )
  }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.

运行结果

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.spark.unsafe.Platform (file:/Users/wuzikang/.m2/repository/org/apache/spark/spark-unsafe_2.12/2.4.5/spark-unsafe_2.12-2.4.5.jar) to method java.nio.Bits.unaligned()
WARNING: Please consider reporting this to the maintainers of org.apache.spark.unsafe.Platform
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
========== rdd.count = 1000, time = 1721721502000 ms ============
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

运行截图如下:

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_kafka_09

生成数据

继续启动 KafkaProducer 的程序,让数据不断地写入
我们会看到控制台输出内容如下:

========== rdd.count = 1000, time = 1721721502000 ms ============
========== rdd.count = 9, time = 1721721710000 ms ============
========== rdd.count = 19, time = 1721721712000 ms ============
========== rdd.count = 19, time = 1721721714000 ms ============
========== rdd.count = 19, time = 1721721716000 ms ============
========== rdd.count = 20, time = 1721721718000 ms ============
========== rdd.count = 19, time = 1721721720000 ms ============
========== rdd.count = 19, time = 1721721722000 ms ============
========== rdd.count = 19, time = 1721721724000 ms ============
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

运行结果如下图所示:

大数据-102 Spark Streaming Kafka ReceiveApproach DirectApproach 附带Producer、DStream代码案例_kafka_10