Anchor-free目标检测算法系列6:CSP(中心点+尺度预测)Center and Scale Prediction: A Box-free Approach for Object Detect

CSP是一种简化的目标检测方法,它通过预测目标中心点的热图和尺度来实现检测。该算法仅使用全卷积网络,避免了复杂的检测头设计。在行人和面部检测中表现出良好性能,尤其擅长小目标检测,但可能对同类遮挡物体处理不足。
摘要由CSDN通过智能技术生成

论文与CenterNet:Object as points 文章的思想很相似。以行人检测为例将目标检测简化为一个直接的全卷积式的中心点和尺度预测任务,CSP (Center and Scale Prediction) 检测器结构简单。首先将一张图像输入全卷积网络,基于网络提取的特征图预测两个映射图,一个以热图的方式呈现目标的中心点位置,一个负责预测目标的尺度。在此基础上,便可以将两者映射到原图上并解译成目标检测框:中心点热图的位置对应检测框的中心位置,预测的尺度大小对应检测框的大小,而中心点热图上的置信度则对应检测框的得分。该算法在行人检测和面部检测数据集上做了实验,准确率有竞争力。

                                              图25 CSP整体架构示意图图

网络包括两个部分:特征提取和检测。前者把不同分辨率的特征图连在一起,后者是卷积层和两个预测层,分别对应中心位置和尺度大小。基于上述特征图,检测头负责将特征图解译成检测结果。在检测头模块中,首先接上一个 3x3 卷积层将输入特征图的维度压缩到 256,然后接上两个并联的 1x1 卷积层产生目标中心点热图和目标尺度预测图,这样相较于 R-CNN 及

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值