这篇论文是快手在2023年,建模短视频观看时长的论文。
这里提炼出短视频时长建模框架的四个关键点:
1.观看时长是一个连续值,是一个有序变量,因此建模时候应该要考虑到这种顺序关系。
2.模型必须捕捉观看行为的依赖关系,比如看完一个视频必须是在看一半视频的前提下才能发生。
3.模型要意识到预估的不确定性。如果用回归来建模的话,会导致模型梯度由长视频主导,使得模型预估不准确。
4.真实的推荐系统会遭遇到偏差放大,因此期望模型不能放大偏差。例如样本选择偏差、受欢迎程度偏差。
基于这四个关键点:
作者提出了基于树的渐进回归模型(Tree based Progressive Regression Model,简称TPM)来预估时长。在TPM中引入观看时间顺序的关系,并且将问题分解为多个条件依赖的分类任务,用二叉平衡树来表示。观看时间的期望可以通过遍历树得到,同时将观看时长预测的方差引入到目标函数中作为不确定性估量。此外还用后门调整融入到TPM中,从而减轻偏差放大。
文章追踪了已有解决方案在这四个关键点的解决情况:
WLR为youtube提出的Weighted Logistic Regression,用观看时长对正样本加权。其缺点在于:
- WLR必须使用人工指定的正负样本和权重进行训练,这可能会导致观看时间的近似值较差。
- WLR会对正样本根据时长加权,因而时长越高的正样本加权的权重越大。
- 不确定问题依然存在。
D2Q为快手提出的Duration-Deconfounded Quantile,根据视频的时长进行等频分组,在每组中用传统回归模型对观看时间进行建模。
- D2Q根据视频时长将视频划分为不同的组,在组内利用传统的回归模型进行预测,来减轻时长本身的偏差。
- 时长的顺序关系和条件依赖问题没有解决。
- 不确定问题依然存在。