黑塞矩阵-二阶偏导矩阵

黑塞矩阵

泰勒展开公式

设n是一个正整数。如果定义一个包含 a a a的区间上的函数 f f f a a a点处 n + 1 n+1 n+1次可导,那么对于这个区间上的任意 x x x,都有:
f ( x ) = f ( a ) + f ′ ( a ) 1 ! ( x − a ) + f ( 2 ) ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) f(x)=f(a)+\cfrac{f'(a)}{1!}(x-a)+\cfrac{f^{(2)}(a)}{2!}(x-a)^2+\cdots+\cfrac{f^{(n)}(a)}{n!}(x-a)^n+R_n(x) f(x)=f(a)+1!f(a)(xa)+2!f(2)(a)(xa)2++n!f(n)(a)(xa)n+Rn(x)
其中的多项式称为函数在 a a a处的泰勒展开式,剩余的 R n ( x ) R_{n}(x) Rn(x)是泰勒公式的余项,是 ( x − a ) n (x-a)^n (xa)n的高阶无穷小。

泰勒二阶展开

同理,二元函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) x 0 ( x 10 , x 20 ) x_0(x_{10},x_{20}) x0(x10,x20)处的泰勒展开式为
f ( x 1 , x 2 ) = f ( x 10 , x 20 ) + f x 1 ( x 10 , x 20 ) Δ x 1 + f x 2 ( x 10 , x 20 ) Δ x 2 + 1 2 [ f x 1 x 1 ( x 10 , x 20 ) Δ x 1 2 + 2 f x 1 x 2 ( x 10 , x 20 ) Δ x 1 Δ x 2 + f x 2 x 2 ( x 10 , x 20 ) Δ x 2 2 ] f(x_1,x_2)=f(x_{10},x_{20})+f_{x_1}(x_{10},x_{20})\Delta{x_1}+f_{x_2}(x_{10},x_{20})\Delta x_2+\cfrac{1}{2}[f_{x_1x_1}(x_{10},x_{20})\Delta x_1^2+2f_{x_1x_2}(x_{10},x_{20})\Delta x_1\Delta x_2+f_{x_2x_2}(x_{10},x_{20})\Delta x_2^2] f(x1,x2)=f(x10,x20)+fx1(x10,x20)Δx1+fx2(x10,x20)Δx2+21[fx1x1(x10,x20)Δx12+2fx1x2(x10,x20)Δx1Δx2+fx2x2(x10,x20)Δx22]
其中 Δ x 1 = x 1 − x 10 , Δ x 2 = x 2 − x 20 , f x 1 = ∂ f ∂ x 1 , f x 2 = ∂ f ∂ x 2 , f x 1 x 1 = ∂ 2 f ∂ x 1 2 , f x 2 x 2 = ∂ 2 f ∂ x 2 2 , f x 1 x 2 = ∂ 2 f ∂ x 1 ∂ x 2 \Delta x_1=x_1-x_{10}, \Delta x_2=x_2-x_{20}, f_{x_1}=\cfrac{\partial f}{\partial x_1}, f_{x_2}=\cfrac{\partial f}{\partial x_2}, f_{x_1x_1}=\cfrac{\partial^2f}{\partial x_1^2}, f_{x_2x_2}=\cfrac{\partial^2f}{\partial x_2^2}, f_{x_1x_2}=\cfrac{\partial^2f}{\partial x_1\partial x_2} Δx1=x1x10,Δx2=x2x20,fx1=x1f,fx2=x2f,fx1x1=x122f,fx2x2=x222f,fx1x2=x1x22f

矩阵形式:
f ( X ) = f ( X 0 ) + ( f x 1 , f x 2 ) X 0 ( Δ x 1 Δ x 2 ) + 1 2 ( Δ x 1 , Δ x 2 ) ( f x 1 x 1 , f x 1 x 2 f x 2 x 1 , f x 2 x 2 ) X 0 ( Δ x 1 Δ x 2 ) + ⋯ = f ( X 0 ) + ∇ f ( X 0 ) T Δ X + 1 2 Δ X T G ( X 0 ) Δ X + ⋯ \begin{aligned} f(X)&=f(X_0)+\left(f_{x_1},f_{x_2}\right)_{X_0}\binom{\Delta x_1}{\Delta x_2}+\cfrac{1}{2}\left(\Delta x_1,\Delta x_2\right)\binom{f_{x_1 x_1},f_{x_1 x_2}}{f_{x_2 x_1},f_{x_2 x_2}}_{X_0}\binom{\Delta x_1}{\Delta x_2} + \cdots\\ &=f(X_0)+\nabla f(X_0)^T\Delta X+\cfrac{1}{2}\Delta X^TG(X_0)\Delta X+\cdots \end{aligned} f(X)=f(X0)+(fx1,fx2)X0(Δx2Δx1)+21(Δx1,Δx2)(fx2x1,fx2x2fx1x1,fx1x2)X0(Δx2Δx1)+=f(X0)+f(X0)TΔX+21ΔXTG(X0)ΔX+
G ( X 0 ) G(X_0) G(X0) f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) X 0 X_0 X0点处的黑塞矩阵。它是函数 f ( x 1 , x 2 ) f(x_1,x_2) f(x1,x2) X 0 X_0 X0点处的二阶偏导所组成的方阵。

多元函数的黑塞矩阵

将二元函数的泰勒展开式推广到多元函数,则 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) X 0 X_0 X0处的泰勒展开式的矩阵形式为:
f ( X ) = f ( X 0 ) + ∇ f ( X 0 ) T Δ X + 1 2 Δ X T G ( X 0 ) Δ X + ⋯ f(X)=f(X_0)+\nabla f(X_0)^T\Delta X+\cfrac{1}{2}\Delta X^TG(X_0)\Delta X+\cdots f(X)=f(X0)+f(X0)TΔX+21ΔXTG(X0)ΔX+
其中:
∇ f ( X 0 ) = [ f x 1 , f x 2 , … , f x n ] X 0 T \nabla f(X_0)=\left[f_{x_1},f_{x_2},\dots,f_{x_n}\right]^T_{X_0} f(X0)=[fx1,fx2,,fxn]X0T,是 f f f X 0 X_0 X0的梯度

G ( X 0 ) = [ f x 1 x 1 , f x 1 x 2 , … , f x 1 x n f x 2 x 1 , f x 2 x 2 , … , f x 2 x n ⋮ f x n x 1 , f x n x 2 , … , f x n x n ] G(X_0)= \left[\begin{array}{cccc}{f_{x_1x_1},f_{x_1x_2},\dots,f_{x_1x_n}} \\ {f_{x_2x_1},f_{x_2x_2},\dots,f_{x_2x_n}} \\ {\vdots} \\ {f_{x_nx_1},f_{x_nx_2},\dots,f_{x_nx_n}}\end{array}\right] G(X0)=fx1x1,fx1x2,,fx1xnfx2x1,fx2x2,,fx2xnfxnx1,fxnx2,,fxnxn为函数 f ( X 0 ) f(X_0) f(X0) X 0 X_0 X0处的黑塞矩阵。黑塞矩阵是由目标函数 f ( X 0 ) f(X_0) f(X0)在点 X X X处的二阶偏导数组成的 n × n n \times n n×n阶对称矩阵。

百度百科-黑塞矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值