已完成总结
- 2021.5.16:将YOLOv5导出为torchscript,onnx,CoreML(macOS),尝试编写c++应用程序调用onnx模型,失败。这会生成一个Windows桌面应用程序,属性设置未完成,考虑学习成本太高,放弃。
- 1.在darknet(YOLOv4)中实现Repulsion_Loss。
- 2.使用YOLOv4原版权重只检测人,并实现计数。
- 3.用darknet重新训练coco_only_person,评估AP。(505000个batch时间太久,只训练了50000个batch,70多AP。)
检测结果:https://blog.csdn.net/weixin_40557160/article/details/116004086
没有原版权重好,不知道YOLOv4中person的AP是多少? - 4.测试Scaled-YOLOv4,只检测人。
- 5.测试YOLOv5,只检测人。
- 6.用YOLOv5重新训练coco_only_person,测试。
结果:https://blog.csdn.net/weixin_40557160/article/details/116004086
未完成
- 1.pytorch训练,将权重导出为ONNX,编写c代码实现推理。
- 2.实现CSP-efficientnet.
- 3.BackBone:修改YOLOv4的cfg文件,在v4中实现CSP-efficientnet.
- 4.Neck:修改PANet+SPP 为 biFPN+SPP。
- 5.c++调用YOLOv4,v5.