- 博客(18)
- 收藏
- 关注
原创 c++ 通过opertor定义类的比较函数
通过在类函数中对 < 重新定义,就能完成类的比较函数,完成在sort排序,或类的比较功能,代码如下。
2024-02-11 21:59:18 356 1
原创 win10 在python 环境下安装tensorRT l流程
前提是假设电脑中已经安装了CUDA 和CUDNN,并设置好相关的环境变量CUDA与cuDNN安装教程(超详细)-CSDN博客。
2023-12-02 13:40:28 220 1
原创 COCO2017数据集,mini coco数据集分享
链接:https://pan.baidu.com/s/17wpMzJvzSQ-a3qbaqIbmdg?
2023-10-26 14:07:56 3407 12
原创 Pascal voc2012,VOC_test2012 下载地址
链接:https://pan.baidu.com/s/1jzwTlvf2UwZsqRaDtnwvWQ?pwd=data提取码:data。
2023-10-24 10:47:01 1491 5
原创 pytorch 模型更新部分权重
在迁移学习中或者对原有模型修改后,采用预训练模型会提高训练效率和模型精度。因为原来的模型和新模型的结构不同,是无法直接加载原来模型的权重的。我们通常只会加载我们需要的部分预训练权重,通常是加载前面的部分权重,后面的权重进行抛弃。
2023-10-23 11:35:51 361
原创 pytorch 模型保存和断点恢复训练
在使用pytorch训练模型中,有时候需要从断点处继续训练,那么需要将模型、优化器、lr_scheduler,epoch和其他args进行保存,如果使用的apm混合精度,还要保存scaler。在恢复训练的时候,需要重新加载数据即可,在推理阶段,只要保存model.state_dict()就好了。
2023-10-16 11:21:32 484 1
原创 python itertools 常用函数
嵌套循环像里程表那样循环变动,每次迭代时将最右侧的元素向后迭代。这种模式形成了一种字典序,因此如果输入的可迭代对象是已排序的,笛卡尔积元组依次序发出。运行之前,它会完全耗尽输入的可迭代对象,在内存中保留值的临时池以生成结果积。相应地,它只适用于有限的输入。一个元素无线循环 , itertools.repeat(elem,infi / n)该函数大致相当于下面的代码,只不过实际实现方案不会在内存中创建中间结果。要计算可迭代对象自身的笛卡尔积,将可选参数。设定为要重复的次数。可迭代对象输入的笛卡儿积。
2023-10-13 10:54:01 77
原创 目标检测中常见的指标 : MS COCO 评估标准
我们需要根据什么来判断目标检测模型的优劣呢?通过IOU 大于阈值?类别正确,还是 confidence大于制定阈值?其实我们通常采用cmcm评估指标。
2023-10-11 14:27:49 139
原创 pytorch 对原有模型进行修改,创建新的backbone的方法
在使用pytorch进行建模时,有时候需要重新提取模型的某个特征曾,比如:在更换不同的backbone时。torchvison 提供了专门的函数create_feature_extractor()来对中间特征层进行提取,达到重构backbone的目的。
2023-10-10 11:03:34 686 2
原创 FPN 结构 Feature Pyramid Networks
FPN(Feature Pyramid Networks),发表于2016年的CVPR , 能够给Faster RCNN提高2.3%(IOU 0.5:0.95),提升很明显。
2023-10-09 11:21:45 128 1
原创 Faster R-CNN 网络结构
Faster R-CNN 是作者在fast r-cnn后又一力作,同样采用VGG16作为backbone。推理速度能达到5fps,在2015年 ILSVRC 和coco景山获得多个项目第一名。
2023-10-02 22:13:40 116 1
原创 Fast RCNN 的网络结构
Fast RCNN 是作者Ross 在2015年发表的,同样采用VGG16自以为backbone 比R-CNN 训练速度提高9倍,推理时间快了200多倍,准确率从62% 提高到66% (VOC 数据集上)
2023-10-02 21:47:54 81 1
原创 R-Cnn 网络结构
R-CNN(Region with CNN featrue),是深度学习目标检测的开山之作,作者是Ross Girshick,论文原名为 :Rich feature hierarchies for accurate object detection and semantic segmentation。
2023-10-02 21:28:02 238 1
原创 信息熵,KL散度,交叉熵和pytorch中的交叉熵损失函数
根据上面的公式,我们用KL散度看的是对原始分布中的数据概率与近似分布之间的对数差的期望。我们现在知道了如何衡量一个系统的信息量的期望,那么当我们用一个系统,去描述另一个系统的时候,如何衡量我们描述的是否正确呢?也就是,当我们对系统进行数学建模的时候,我们如何量化我们的模型的好坏。在某个不确定的系统中,由很多随机的事件,如比如由连个队伍a,b 进行比赛,a获胜的概率是0.9.两只队伍分别获胜所提供的信息量是不一样的。在多分类任务中,标签往往用one hot编码,其实是只有1个分类的概率是1,其他的都是0。
2023-09-19 14:02:54 152
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人