Faster R-CNN 网络结构

        Faster  R-CNN 是作者在fast r-cnn后又一力作,同样采用VGG16作为backbone。推理速度能达到5fps,在2015年 ILSVRC 和coco竞赛中获得多个项目第一名。

1. Faster  R-CNN 的网络结构

        在faster r-cnn网络结构中,采用了RPN(Rigion Proposal Network)结构代替了SS(selective search)算法,其他和fast rcnn 的结构是一样的。可以理解为,Faster r-cnn = FPN + Fast r-cnn

YOLOv3和Faster R-CNN都是用于目标检测的深度学习网络,它们的网络结构和设计各自有着不同的优点和特点。 YOLOv3的优点: 1. 高速度:YOLOv3是一种实时目标检测器,其速度非常快,可以达到每秒30帧以上的检测速度,能够满足实时检测的需求。 2. 精度高:YOLOv3引入了多尺度特征图,可以更好的处理目标的大小变化,相比YOLOv2精度有了较大提升,检测效果较为准确。 3. 网络简单:YOLOv3网络结构相对简单,只有一个整体网络,训练和推理过程都很简单。 Faster R-CNN的优点: 1. 准确度高:Faster R-CNN模型利用RPN网络进行目标的候选框提取,再通过ROI Pooling层对候选框进行特征提取和分类,能够更好地处理小目标和密集目标的检测,检测精度相对较高。 2. 网络结构清晰:Faster R-CNN由两个子网络组成,一个是用于候选框提取的RPN网络,另一个是用于检测的分类网络,网络结构清晰明了,易于理解和调整。 3. 可扩展性强:Faster R-CNN网络中的RPN网络可以自由调整,可以通过改变RPN的输出特征图大小和数量来实现对不同尺度目标的检测,具有较强的可扩展性。 综上所述,YOLOv3和Faster R-CNN在目标检测方面各有优点,需要根据实际情况进行选择和调整。如果需要高速度的实时检测,可以选择YOLOv3;如果需要更高的检测精度和较强的可扩展性,可以选择Faster R-CNN
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值