COCO2017数据集,mini coco数据集分享

 分享几个数据集,大哥大姐觉得有用给点个赞哦。

我在这养了一只可爱的小猫咪,大家路过,可以摸一下。

说明:

  1.     文件夹下面有coco2017完整的数据集,比较大(44GB),分为多个压缩文件,
  2.     另外,为了满足某些人调试的需要,分别把coco数据集压缩出了3个子数据集,包含训练集和测试集照片熟练分别为 :50,1000,3200,文件大小分别为:16mb,311mb,999mb,供大家下载

下载地址

链接:https://pan.baidu.com/s/17wpMzJvzSQ-a3qbaqIbmdg?pwd=data 
提取码:data 
 

### 回答1: minicoco数据集是一个常用的计算机视觉数据集,用于目标检测和场景理解的研究。该数据集是在COCO数据集的基础上进行了裁剪和压缩,以便于在资源有限的设备上使用。 minicoco数据集包含了一系列图像,每个图像都有对应的标注信息。这些标注信息包括对象类别、边界框和语义分割掩码。通过对这些图像进行标注,可以用于训练和评估目标检测模型和语义分割模型。 minicoco数据集的特点之一是其相对较小的规模。相比于原始的COCO数据集minicoco数据集包含的图像数量更少,从而减少了数据集的存储和处理成本。这使得minicoco数据集成为在计算资源有限的情况下进行研究和开发的理想选择。 此外,minicoco数据集在保留了目标检测和语义分割任务所需的标注信息的同时,也可以较好地满足一些特定研究领域的需要。例如,在一些特定的目标检测任务中,只需要勾画出对象的大致边界,而不需要详细的像素级标注。minicoco数据集可以根据具体的需求进行裁剪和定制,以满足不同研究任务的要求。 综上所述,minicoco数据集是一个经过裁剪和压缩的计算机视觉数据集,用于目标检测和场景理解的研究。其规模较小,适合在资源有限的设备上使用,并可以根据需求进行定制。 ### 回答2: minicoco数据集是一个用于计算机视觉领域的图像数据集。它是COCO数据集的一个缩小版本,包含了COCO数据集的一部分图像和标注信息。 minicoco数据集主要用于研究和开发图像识别、目标检测和语义分割等任务。它包含了多个类别的物体图像,每个图像都有对应的标注信息,包括物体的边界框、类别标签和物体的分割掩码。 使用minicoco数据集,可以进行许多计算机视觉任务的研究和开发。例如,可以使用这个数据集来训练图像识别模型,使其能够准确地识别出图像中的物体。还可以利用minicoco数据集进行目标检测的研究,通过检测和定位感兴趣的物体。此外,还可以使用分割掩码信息,对图像中的物体进行像素级别的语义分割。 minicoco数据集相对于完整的COCO数据集而言,其规模较小,因此在计算资源和存储空间有限的情况下使用更加方便。同时,其包含的图像和标注信息仍然具有代表性,可以作为一个良好的基准测试集。 总之,minicoco数据集是一个用于计算机视觉领域的缩小的COCO数据集,可用于图像识别、目标检测和语义分割等任务的研究和开发。它提供了一组图像和标注信息,方便研究人员在计算资源有限的情况下进行实验和算法的验证。 ### 回答3: minicoco数据集是一个用于计算机视觉任务的图像数据集。它是基于COCO数据集的一个精简版,旨在提供一个更小规模但包含多种物体类别和场景的数据集,以便于进行算法开发和测试。 minicoco数据集包含了1000张图像,以及这些图像中出现的80个物体类别的标注信息。这些物体类别涵盖了常见的人类、动物、交通工具、家具等物体。每个图像中可能包含多个物体,因此每个物体都有相应的边界框标注,以及类别标签。 除了包含物体类别和边界框信息外,minicoco数据集还提供了其他一些有用的注释信息,例如实例分割掩码和关键点标注。通过这些注释信息,研究人员可以开展更复杂的计算机视觉任务,如目标检测、实例分割和关键点检测等。 minicoco数据集的提供可以大大简化计算机视觉算法的开发过程,因为它规模较小、标注较全面,同时又保留了COCO数据集中丰富多样的物体类别和场景。研究人员可以利用minicoco数据集进行算法验证、调试和快速原型开发,从而更高效地推动计算机视觉领域的研究和应用。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值