题目条件:
找出从自然数1、2、... 、n(0<n<10)中任取r(0<r<=n)个数的所有组合。从大到小输出。(从小到大输出同理,读者自行琢磨。)
方法1:
递归算法:
1.先固定每组组合的第一个数字
2.利用递归再固定下一个数字,类似于树状结构,照此类推
3.递归跳出条件r = 1
#include <stdio.h>
const int num = 100;
int a[num];
void combination(int n, int r) {
for (int i = n; i >= r; i--) {
a[r] = i;
if (r > 1) combination(i-1, r-1);
else {
for (int j = a[0]; j > 0; j--)
printf("%d", a[j]);
printf("\n");
}
}
}
int main() {
int n, r;
scanf("%d%d", &n, &r);
if (r > n) printf("input error!");
else {
a[0] = r;
combination(n,r);
}
return 0;
}
方法2:
深度遍历(也属递归算法):
#include<cstdio>
using namespace std;
const int num = 15;
int a[num], n, r;
void dfs(int n, int x) {
if (x == r) { //递归跳出条件:当数组存储的数字达到r时输出
for (int i = 0; i < r; i++)
printf("%d", a[i]);
printf("\n");
}
for (int i = n; i > 0; i--) {
a[x] = i;
dfs(i-1, x+1);
}
}
int main() {
while (~scanf("%d%d", &n, &r)) {
dfs(n,0);
}
return 0;
}