组合数的几种实现算法

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_40571331/article/details/82848341

题目条件:

找出从自然数1、2、... 、n(0<n<10)中任取r(0<r<=n)个数的所有组合。从大到小输出。(从小到大输出同理,读者自行琢磨。)

 

方法1:

递归算法:

1.先固定每组组合的第一个数字

2.利用递归再固定下一个数字,类似于树状结构,照此类推

3.递归跳出条件r = 1

#include <stdio.h>
const int num = 100;

int a[num];

void combination(int n, int r) {
	for (int i = n; i >= r; i--) {
		a[r] = i;
		if (r > 1) combination(i-1, r-1);
		else {
			for (int j = a[0]; j > 0; j--) 
				printf("%d", a[j]);
			printf("\n");
		}
	}
}

int main() {
	
	int n, r;
	scanf("%d%d", &n, &r);
	if (r > n) printf("input error!");
	else {
		a[0] = r;
		combination(n,r); 
	}
	return 0;
} 

 

方法2:

深度遍历(也属递归算法):

#include<cstdio>
using namespace std;
const int num = 15;

int a[num], n, r;
void dfs(int n, int x) { 
	if (x == r) { //递归跳出条件:当数组存储的数字达到r时输出
		for (int i = 0; i < r; i++) 
			printf("%d", a[i]);
		printf("\n");
	}
	for (int i = n; i > 0; i--) {
		a[x] = i;
		dfs(i-1, x+1);
	}
}   

int main() {
	while (~scanf("%d%d", &n, &r)) {
		dfs(n,0);
	}
	return 0;
}        

 

展开阅读全文

没有更多推荐了,返回首页