回归模型中对数变换的含义

1 精确解释

1.1 因变量采用对数变换

l n ( y ^ ) = β 0 + β 1 × x ln(\hat y)=\beta_0 +\beta_1 \times x ln(y^)=β0+β1×x
x → x + 1 ; y ^ 1 → y ^ 2 x \to x+1; \hat y_1 \to \hat y_2 xx+1;y^1y^2

{ y ^ 1 = e β 0 + β 1 × x y ^ 2 = e β 0 + β 1 × ( x + 1 ) \begin{cases} \hat y_1=e^{\beta_0 +\beta_1 \times x}\\ \hat y_2=e^{\beta_0 +\beta_1 \times (x+1)} \end{cases} {y^1=eβ0+β1×xy^2=eβ0+β1×(x+1)

y ^ 2 y ^ 1 = e β 0 + β 1 × ( x + 1 ) e β 0 + β 1 × x = e [ β 0 + β 1 × ( x + 1 ) ] − [ β 0 + β 1 × x ] = e β 1 \begin{aligned} &\frac{\hat y_2}{\hat y_1}\\ &=\frac{e^{\beta_0+\beta_1 \times (x+1)}}{e^{\beta_0+\beta_1 \times x}}\\ &=e^{[\beta_0+\beta_1 \times (x+1)]-[\beta_0+\beta_1 \times x]}\\ &=e^{\beta_1} \end{aligned} y^1y^2=eβ0+β1×xeβ0+β1×(x+1)=e[β0+β1×(x+1)][β0+β1×x]=eβ1

结论

  • x x x每增加一个单位变为 x + 1 x+1 x+1 y ^ \hat y y^变为原来的 e β 1 e^{\beta_1} eβ1
  • x x x每增加一个单位变为 x + 1 x+1 x+1 y ^ \hat y y^相比原来增加 [ e β 1 − 1 ] × 100 % [e^{\beta_1}-1]\times 100\% [eβ11]×100%

1.2 自变量采用对数变换

y ^ = β 0 + β 1 × l n ( x ) \hat y=\beta_0+\beta_1 \times ln(x) y^=β0+β1×ln(x)
x → e × x ; y ^ 1 → y ^ 2 x \to e\times x; \hat y_1 \to \hat y_2 xe×x;y^1y^2
{ y ^ 1 = β 0 + β 1 × l n ( x ) y ^ 2 = β 0 + β 1 × l n ( e × x ) \begin{cases} \hat y_1=\beta_0+\beta_1 \times ln(x)\\ \hat y_2=\beta_0+\beta_1 \times ln(e \times x) \end{cases} {y^1=β0+β1×ln(x)y^2=β0+β1×ln(e×x)

y ^ 2 − y ^ 1 = [ β 0 + β 1 × l n ( e × x ) ] − [ β 0 + β 1 × l n ( x ) ] = [ β 0 + β 1 × ( l n ( e ) + l n ( x ) ) ] − [ β 0 + β 1 × l n ( x ) ] = [ β 0 + β 1 × l n ( e ) + β 1 × l n ( x ) ] − [ β 0 + β 1 × l n ( x ) ] = β 1 × l n ( e ) = β 1 \begin{aligned} &\hat y_2-\hat y_1 \\ &=[\beta_0+\beta_1 \times ln(e \times x)]-[\beta_0+\beta_1 \times ln(x)]\\ &=[\beta_0+\beta_1 \times (ln(e)+ln(x))]-[\beta_0+\beta_1 \times ln(x)]\\ &=[\beta_0+\beta_1 \times ln(e)+\beta_1 \times ln(x)]-[\beta_0+\beta_1 \times ln(x)]\\ &=\beta_1 \times ln(e)\\ &=\beta_1 \end{aligned} y^2y^1=[β0+β1×ln(e×x)][β0+β1×ln(x)]=[β0+β1×(ln(e)+ln(x))][β0+β1×ln(x)]=[β0+β1×ln(e)+β1×ln(x)][β0+β1×ln(x)]=β1×ln(e)=β1
结论

  • x x x变为原来的 e e e倍后,则 y ^ \hat y y^增加 β 1 \beta_1 β1
  • 如果使用以2为底的对数变换,则 x x x变为原来的2倍后, y ^ \hat y y^增加 β 1 \beta_1 β1

1.3 因变量和自变量同时采用对数变换

l n ( y ^ ) = β 0 + β 1 × l n ( x ) ln(\hat y)=\beta_0 +\beta_1\times ln(x) ln(y^)=β0+β1×ln(x)
x → k × x ; y ^ 1 → y ^ 2 x \to k \times x; \hat y_1 \to \hat y_2 xk×x;y^1y^2
{ y ^ 1 = e β 0 + β 1 × l n ( x ) y ^ 2 = e β 0 + β 1 × l n ( k × x ) \begin{cases} \hat y_1=e^{\beta_0+\beta_1\times ln(x)}\\ \hat y_2=e^{\beta_0+\beta_1\times ln(k \times x)} \end{cases} {y^1=eβ0+β1×ln(x)y^2=eβ0+β1×ln(k×x)

y ^ 2 y ^ 1 = e β 0 + β 1 × l n ( k × x ) e β 0 + β 1 × l n ( x ) = e [ β 0 + β 1 × l n ( k × x ) ] − [ β 0 + β 1 × l n ( x ) ] = e [ β 0 + β 1 × l n ( k ) + β 1 × l n ( x ) ] − [ β 0 + β 1 × l n ( x ) ] = e β 1 × l n ( k ) = [ e l n ( k ) ] β 1 = k β 1 \begin{aligned} &\frac{\hat y_2}{\hat y_1}\\ &=\frac{e^{\beta_0+\beta_1\times ln(k \times x)}}{e^{\beta_0+\beta_1\times ln(x)}}\\ &=e^{[\beta_0+\beta_1\times ln(k \times x)]-[\beta_0+\beta_1\times ln(x)]}\\ &=e^{[\beta_0+\beta_1 \times ln(k)+\beta_1 \times ln(x)] - [\beta_0+\beta_1\times ln(x)]}\\ &=e^{\beta_1 \times ln(k)}\\ &=[e^{ln(k)}]^{\beta_1}\\ &=k^{\beta_1} \end{aligned} y^1y^2=eβ0+β1×ln(x)eβ0+β1×ln(k×x)=e[β0+β1×ln(k×x)][β0+β1×ln(x)]=e[β0+β1×ln(k)+β1×ln(x)][β0+β1×ln(x)]=eβ1×ln(k)=[eln(k)]β1=kβ1
结论

  • x x x变为原来的 k k k倍, y ^ \hat y y^变为原来的 k β 1 k^{\beta_1} kβ1
  • x x x变为原来的 k k k倍, y ^ \hat y y^增加 [ k β 1 − 1 ] × 100 % [k^{\beta_1} - 1]\times 100\% [kβ11]×100%

2 粗略解释

2.1 e β − 1 e^{\beta} - 1 eβ1 β \beta β的关系

library(ggplot2)
library(latex2exp)

x <- seq(0, 0.5, 0.001)
y1 <- x
y2 <- exp(x) - 1
df <- data.frame(x = x, y1 = y1, y2 = y2)

ggplot(data = df) +
  geom_line(aes(x = x, y = y1, color = "beta"), size = 1) +
  geom_line(aes(x = x, y = y2, color = "exp(beta)-1"), size = 1) +
  labs(x = TeX('$\\beta$'), y = "Y") + 
  theme_classic()

结论

  • β \beta β较小时, e β − 1 e^{\beta}-1 eβ1 β \beta β的值接近

2.2 因变量采用对数变换

l n Y = β 1 + β 2 t lnY=\beta_1+\beta_2t lnY=β1+β2t
β 2 = d ( l n Y ) d t = d Y / Y d t \beta_2=\frac{d(lnY)}{dt}=\frac{dY/Y}{dt} β2=dtd(lnY)=dtdY/Y
总结

  • β 2 \beta_2 β2测度了 Y Y Y的瞬时变化率
  • β 2 \beta_2 β2可粗略解释为: t t t每增加1个单位, Y Y Y增加 β 2 × 100 % \beta_2 \times 100\% β2×100%,如年均增长率。( e β 2 − 1 ≈ β 2 e^{\beta_2}-1\approx\beta_2 eβ21β2;当 β 2 \beta_2 β2较小时)

2.3 自变量采用对数变换

Y = β 1 + β 2 × l n x Y=\beta_1+\beta_2 \times lnx Y=β1+β2×lnx
β 2 = d Y d ( l n x ) = d Y d x / x \beta_2=\frac{dY}{d(lnx)}=\frac{dY}{dx/x} β2=d(lnx)dY=dx/xdY
总结

  • β 2 \beta_2 β2测度了 x x x轻微变化(百分比变化)后 Y Y Y的绝对变化量
  • β 2 \beta_2 β2可粗略解释为:当 x x x变化 1 % 1\% 1%时, Y Y Y绝对变化 0.01 × β 2 0.01\times \beta_2 0.01×β2

2.4 因变量和自变量同时采用对数变换

l n ( Y ) = β 1 + β 2 × l n x ln(Y)=\beta_1 +\beta_2\times lnx ln(Y)=β1+β2×lnx
β 2 = d ( l n Y ) d ( l n x ) = d Y / Y d x / x \beta_2=\frac{d(lnY)}{d(lnx)}=\frac{dY/Y}{dx/x} β2=d(lnx)d(lnY)=dx/xdY/Y
总结

  • β 2 \beta_2 β2测度了 Y Y Y x x x的弹性,如 Y Y Y为某商品的需求量, x x x为该商品价格, β 2 \beta_2 β2为需求的价格弹性
  • β 2 \beta_2 β2可粗略解释为: x x x变动 1 % 1\% 1%引起 Y Y Y变动的百分数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值