Reaction Paper

反馈论文(RP)是一种提升学术阅读、写作及批判性思维的有效工具,通常要求每周完成一篇总结并评论所读文献的小论文。本文详细介绍了RP的定义、目的、结构要求及其对学术能力的培养作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是reaction paper?

reaction paper,翻译过来为反馈论文(以下简称RP),也叫response paper、synthesis paper,大致意思差不多。

那什么是reaction paper,它是一个提升学术阅读能力、写作基本功和学术思维的最有效的工具,即每一周写一篇综合评价一周内所读文献的小论文,且需要以完全学术化的格式和语言来写。

在美国读社科类博士或硕士,老师都会要求写RP,且每门课程都会要求写。

reaction paper有什么要求?

先看一下美国博士的要求。一年级,一学期写4篇RP,每篇3页纸左右;二年级需对每一篇文献做学术笔记,每周配合写一篇RP。

需评论一周内所读的文献,要求如下:

  1. 讨论论文中最核心的主体;
  2. 与其他课程的知识点连接起来;
  3. 给出自己的评判和评论
  4. 必须用学术语言和结构

为什么写RP?

主要有以下几个理由:

  1. 能同时锻炼阅读能力批判思维能力学术写作能力,这三个能力不仅对学者非常重要,对任何一个人都很重要;
  2. 破势持续阅读新文献,接触大量的高质量文章。学习别人正在关注哪些题目、怎么设计研究、如何驾驭语言。
  3. 培养阅读文献的挑战式模式,训练读文章和设计文章的思维;
  4. 理解读文献写论文之间的关系。读文献是为了融合到自己的论文中去,写论文必须依托在现有的论文纸上。RP可帮助培养将两者紧密结合的思维方式。
  5. 习惯于每天都阅读文献、写论文的工作节奏。这对于以后想以学术为生的人来说尤为重要。

RP应该写什么?

灵感启发和综述引导

RP 的行文结构

总-分-总

老师想在RP里看到的东西

其实老师要求写RP不是想看你阅读了哪些文献,而是想通过RP帮你提升三种能力:

  1. Summarize(概括能力)

    对单篇文献的能力。能否找到所有文献的主题?能够准确全面的理解重点?能否把文章的主旨概括出来。

  2. Synthesis(综合能力)

    对多篇文献的概括能力。能够融会贯通、把不同文章比较起来读、批判性地阅读文章、联系此前或者其他课堂内容?

  3. Apply(应用能力)

    读文献就是为了应用,用到自己的论文中去。文献对你有哪些启发?能否应用到工作中?能否利用他们改进现在的工作?

# 结尾

学术写作中,内容和书写的清晰度是两个首要标准。在写作时,第一步是讲话说清楚讲明白,有逻辑性。华丽的句式和用词都必须建立在有优秀内容和清晰表达的基础之上的。

写RP,教授最看重的是你有没有读懂文章、你的观点是什么?你有没有思辨能力?有没有批判能力以及能不能把观点说清楚。

一开始写不好没关系,正是因为写不好我们才需要练习。最笨的方法就是最快的方法。想要真正提高写作水平必须自己动笔一篇篇的练习。

当你写过了上百篇针对不同文章的response paper, 写一篇要发表的论文又如何能难得倒你?而这你练就的基本功将永远跟着你,谁也拿不走。

你其实根本不需要教授或课程的外部压力也可以自助使用response paper来提升写作能力。找一份国外课程的syllabus (教学大纲),找出自己领域内必须读的经典文章,给自己订制一份私人教学大纲,每周必须读完5-8篇学术论文,每周写一篇有针对性的response paper,感受一下将来做学者的工作节奏。更重要的是,你会发现自己的写作能力在不知不觉中已经嗖嗖嗖的今非昔比了。

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值