克鲁斯卡尔重构树

博客介绍了克鲁斯卡尔重构树的概念及其在处理无向图中困难值路径问题的应用。通过重构树,可以确保点权值的单调性,并利用树上倍增和线段树优化查询效率,解决特定类型的查询问题。
摘要由CSDN通过智能技术生成

处理给出无向图,会出现重边,共m条路径,每条路径有一个困难值,q次询问,求从点x出发只经过困难值小于等于v的路径,求某个值。
克鲁斯卡尔重构树的核心思想是,当添加最小生成树的边的时候,不在两个点之间直接加边,而是新建节点,让边的两个节点分别成为它的左右儿子节点,然后这个新建的点,就成为整个联通块的代表点,点权为连边的值(最开始的n个点为点权)。
性质:一个点的所有子树节点的权值都小于等于它的权值,并且从它开始逐渐向子节点移动,权值是单调不上升的。查询时,可以树上倍增得到当前查询点能够到达的最远的祖先点,那么从这个点能够到达的符合边权限制条件的联通块的节点,就是祖先节点的子树中所有的叶节点。

例题:https://cometoj.com/contest/67/problem/D?problem_id=3801
生成克鲁斯卡尔重构树后跑出dfs序,根据dfs序建立线段树计算区间点权之积

#include <bits/stdc++.h>
using namespace std;
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
typedef long long ll;
const ll mod = 998244353;
const int maxn = 1e5 + 5;
int n, m, q;
ll a[maxn << 1];
struct Edge
{
	int s, e;
	bool friend operator <(Edge a, Edge b) {
		return max(a.s, a.e) < max(b.s, b.e);
	}
} edge[maxn << 1];
int p[maxn << 1];
int value[maxn << 1], cnt;
int find(int x) {
	return p[x] == x ? x : p[x] = find(p[x]);
}
vector<int> load[maxn << 1];
int depth[maxn << 1], grand[maxn << 1][20], N;
int in[maxn << 1], out[maxn << 1], ranks[maxn << 1], t;
void dfs(int s, int pre) {
	in[s] = ++t;
	ranks[t] = s;
	depth[s] = depth[pre] + 1;
	grand[s][0] = pre;
	for (int i = 1; i <= N; ++i)
		grand[s][i] = grand[grand[s][i - 1]][i - 1];
	for (int i = 0, e; i < load[s].size(); ++i) {
		e = load[s][i];
		if (e != pre)
			dfs(e, s);
	}
	out[s] = t;
}
void Kruskal() {
	cnt = n;
	sort(edge + 1, edge + m + 1); 
	for (int i = 1; i <= n; ++i)
		p[i] = i;
	for (int i = 1; i <= m; ++i) {
		int x = find(edge[i].s);
		int y = find(edge[i].e);
		if (x == y) continue;
		value[++cnt] = max(edge[i].s, edge[i].e);
		a[cnt] = 1;
		p[cnt] = p[x] = p[y] = cnt;
		load[cnt].push_back(x), load[x].push_back(cnt);
		load[cnt].push_back(y), load[y].push_back(cnt);
	}
	N = log2(cnt);
	dfs(cnt, 0);
}
ll mul[maxn << 3];
void build(int rt, int l, int r) {
	if (l == r) {
		mul[rt] = a[ranks[l]];
		return;
	}
	int mid = (l + r) >> 1;
	build(lson), build(rson);
	mul[rt] = mul[rt << 1] * mul[rt << 1 | 1] % mod;
}
void update(int rt, int l, int r, int pos, int x) {
	if (l == r) {
		mul[rt] = x;
		return;
	}
	int mid = (l + r) >> 1;
	if (pos <= mid)
		update(lson, pos, x);
	else
		update(rson, pos, x);
	mul[rt] = mul[rt << 1] * mul[rt << 1 | 1] % mod;
}
ll query(int rt, int l, int r, int L, int R) {
	if (L <= l && r <= R)
		return mul[rt];
	int mid = (l + r) >> 1;
	ll res = 1;
	if (L <= mid)
		res *= query(lson, L, R), res %= mod;
	if (mid < R)
		res *= query(rson, L, R), res %= mod;
	return res;
}

int main(int argc, char const *argv[])
{
	freopen("in.txt", "r", stdin);
	scanf("%d%d%d", &n, &m, &q);
	for (int i = 1; i <= n; ++i) {
		scanf("%lld", &a[i]); a[i] %= mod;
	}
	for (int i = 1; i <= m; ++i) {
		scanf("%d%d", &edge[i].s, &edge[i].e);
	}
	Kruskal();
	build(1, 1, cnt);
	int op, x, y;
	while (q--) {
		scanf("%d%d%d", &op, &x, &y);
		if (op == 1) {
			if (x > y)
				printf("0\n");
			else {
				for (int i = N; i >= 0; --i) {
					if (depth[grand[x][i]] > 0 && value[grand[x][i]] <= y)
						x = grand[x][i];
				}
				printf("%lld\n", query(1, 1, cnt, in[x], out[x]) % mod);
			}
		}
		else
			update(1, 1, cnt, in[x], y % mod);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值