POD方法读书笔记(二)

本文整理 (目前实际上就是先读一遍) 模型约化文献集第一部分第一章1的POD (Proper Orthogonal Decomposition) 方法和一些应用分析.

POD for linear Quadratic Optimal Control 的第二部分.

POD处理Evolution Problems的框架

下面我们就把这个POD方法用到具体的一类问题上看看. 顺便给出一个先验误差估计. 实际上我们大概猜猜, 基越多, 逼近就可能更好. anyway, 我们先明确一下问题是什么, 然后再把POD方法用上去.

什么是evolution problem?

实话实说, 这一节我看得身陷泥沼, 痛苦异常. 但仍然要刨根究底地先自己弄清楚.

要给一大类问题定义出一个通用的表达式, 我们要先划定一个范围, 并给出一些限定.
V V V H H H 是两个实的可分Hilbert空间, V V V H H H 中稠密并且紧嵌入到 H H H 中 (就是说恒等算子是紧算子). t ∈ [ 0 , T ] t\in[0,T] t[0,T], 定义对称双线性型 a ( t ; ⋅ , ⋅ ) : V × V → R a(t;\cdot,\cdot):V\times V\to\mathbb{R} a(t;,):V×VR满足
∣ a ( t ; ψ , ϕ ) ∣ ≤ γ ∥ ψ ∥ V ∥ ϕ ∥ V ,   ∀ ψ , ϕ ∈ V   a . e .   i n   [ 0 , T ] a ( t ; ϕ , ϕ ) ≥ γ 1 ∥ ϕ ∥ V 2 − γ 2 ∥ ϕ ∥ H 2   ∀ ϕ ∈ V   a . e .   i n   [ 0 , T ] \begin{aligned} &|a(t;\psi,\phi)|\leq\gamma\|\psi\|_V\|\phi\|_V,\ \forall \psi,\phi\in V\ a.e.\ in\ [0,T]\\ &a(t;\phi,\phi)\geq\gamma_1\|\phi\|_V^2-\gamma_2\|\phi\|_H^2\ \forall\phi\in V\ a.e.\ in\ [0,T] \end{aligned} a(t;ψ,ϕ)γψVϕV, ψ,ϕV a.e. in [0,T]a(t;ϕ,ϕ)γ1ϕV2γ2ϕH2 ϕV a.e. in [0,T]
其中 γ , γ 1 > 0 \gamma,\gamma_1>0 γ,γ1>0, γ 2 ≥ 0 \gamma_2\geq0 γ20都不依赖于 t t t. Hilbert空间是自反的, 所以我们可以写 V ↪ H = H ′ ↪ V ′ V\hookrightarrow H=H'\hookrightarrow V' VH=HV. 这种写法可以举例如 H 1 ( Ω ) ↪ L 2 ( Ω ) = L 2 ( Ω ) ↪ H − 1 ( Ω ) H^1(\Omega)\hookrightarrow L^2(\Omega)=L^2(\Omega)\hookrightarrow H^{-1}(\Omega) H1(Ω)L2(Ω)=L2(Ω)H1(Ω). 两个嵌入都是连续的稠密的.
定义一个函数空间 W ( 0 , T ) W(0,T) W(0,T):
W ( 0 , T ) = { ϕ ∈ L 2 ( 0 , T ; V ) ∣ ϕ t ∈ L 2 ( 0 , T ; V ′ ) } W(0,T) = \{\phi\in L^2(0,T;V)|\phi_t\in L^2(0,T;V')\} W(0,T)={ϕL2(0,T;V)ϕtL2(0,T;V)}
它和前面定义的 H 1 ( 0 , T ; X ) H^1(0,T;X) H1(0,T;X) 不是一个东西. 其上的内积与范数定义是有差别的. 它的内积定义成
⟨ ϕ , ψ ⟩ W ( 0 , T ) : = ∫ 0 T ⟨ ϕ ( t ) , ψ ( t ) ⟩ V + ⟨ ϕ t ( t ) , ψ t ( t ) ⟩ V ′ d t \langle\phi,\psi\rangle_{W(0,T)} := \int_0^T\langle \phi(t),\psi(t)\rangle_V+\langle\phi_t(t),\psi_t(t)\rangle_{V'}\text{d}t ϕ,ψW(0,T):=0Tϕ(t),ψ(t)V+ϕt(t),ψt(t)Vdt
范数则仍由内积诱导. 在这个内积下它成为Hilbert空间. W ( 0 , T ) W(0,T) W(0,T) 连续嵌入 (恒等算子连续) 到 C ( [ 0 , T ] ; H C([0,T];H C([0,T];H, 所以对 ϕ , ψ ∈ W ( 0 , T ) \phi,\psi\in W(0,T) ϕ,ψW(0,T), 边界点 ψ ( 0 ) , ψ ( T ) , ϕ ( 0 ) , ϕ ( T ) \psi(0),\psi(T),\phi(0),\phi(T) ψ(0),ψ(T),ϕ(0),ϕ(T) 是有意义的. 进一步, 在 W ( 0 , T ) W(0, T) W(0,T) 上的分部积分公式为
∫ 0 T ⟨ ϕ t ( t ) , ψ ( t ) ⟩ V ′ , V d t + ∫ 0 T ⟨ ψ t ( t ) , ϕ ( t ) ⟩ V ′ , V d t = ∫ 0 T d d t ⟨ ϕ ( t ) , ψ ( t ) ⟩ H d t = ⟨ ϕ ( T ) , ψ ( T ) ⟩ H − ⟨ ϕ ( 0 ) , ψ ( 0 ) ⟩ H \begin{aligned} &\int_0^T\langle\phi_t(t),\psi(t)\rangle_{V',V}\text{d}t+\int_0^T\langle\psi_t(t),\phi(t)\rangle_{V',V}\text{d}t\\ =&\int_0^T\frac{\text{d}}{\text{d}t}\langle\phi(t),\psi(t)\rangle_H\text{d}t\\ =&\langle\phi(T),\psi(T)\rangle_H-\langle\phi(0),\psi(0)\rangle_H \end{aligned} ==0Tϕt(t),ψ(t)V,Vdt+0Tψt(t),ϕ(t)V,Vdt0Tdtdϕ(t),ψ(t)Hdtϕ(T),ψ(T)Hϕ(0),ψ(0)H
这个分部积分公式还是用之前的例子, H 1 ( Ω ) H^1(\Omega) H1(Ω), L 2 ( Ω ) L^2(\Omega) L2(Ω), H − 1 ( Ω ) H^{-1}(\Omega) H1(Ω) 来验证是这个样子, 但是怎么推的, 我没弄懂. 可以暂时当成个定义来用. 用分部积分公式可以导出的一个有用的关系式是
⟨ ϕ t ( t ) , ψ ⟩ V ′ , V = d d t ⟨ ϕ ( t ) , ψ ⟩ H \langle\phi_t(t),\psi\rangle_{V',V}=\frac{\text{d}}{\text{d}t}\langle\phi(t),\psi\rangle_H ϕt(t),ψV,V=dtdϕ(t),ψH
( ϕ , ψ ) ∈ W ( 0 , T ) × V (\phi,\psi)\in W(0,T)\times V (ϕ,ψ)W(0,T)×V 以及 a.e. t ∈ [ 0 , T ] t\in [0,T] t[0,T] 成立.
实际上, 就理解成
⟨ ϕ t ( t ) , ψ ⟩ V ′ , V = ⟨ ϕ t ( t ) , ψ ⟩ H \langle\phi_t(t),\psi\rangle_{V',V}=\langle\phi_t(t),\psi\rangle_H ϕt(t),ψV,V=ϕt(t),ψH
是可以的. 更进一步说,
⟨ ϕ , ψ ⟩ V ′ , V = ⟨ ϕ , ψ ⟩ H \langle\phi,\psi\rangle_{V',V}=\langle\phi,\psi\rangle_H ϕ,ψV,V=ϕ,ψH

原始模型

现在, 准备工作都做完了, 我们可以给出我们这个抽象的问题描述了:

evolution problem y : [ 0 , T ] → V y:[0,T]\to V y:[0,T]V, 满足下式
d d t ⟨ y ( t ) , ϕ ⟩ H + a ( t ; y ( t ) , ϕ ) = ⟨ ( f + B u ) ( t ) , ϕ ⟩ V ′ , V ,   ∀ ϕ ∈ V ⟨ y ( 0 ) , ϕ ⟩ H = ⟨ y 0 , ϕ ⟩ H ,   ∀ ϕ ∈ H \begin{aligned} &\frac{\text{d}}{\text{d}t}\langle y(t), \phi\rangle_H+a(t;y(t),\phi)=\langle(f+Bu)(t),\phi\rangle_{V',V},\ \forall\phi\in V \\ &\langle y(0),\phi\rangle_H=\langle y_0,\phi\rangle_H,\ \forall \phi\in H \end{aligned} dtdy(t),ϕH+a(t;y(t),ϕ)=(f+Bu)(t),ϕV,V, ϕVy(0),ϕH=y0,ϕH, ϕH
其中 u ∈ U = L 2 ( 0 , T ; R N u ) u\in U=L^2(0,T;\mathbb{R}^{N_u}) uU=L2(0,T;RNu) 称为输入, N u ∈ N N_u\in\mathbb{N} NuN 为选定的维数, U U U 称为输入空间; f ∈ L 2 ( 0 , T ; V ′ ) f\in L^2(0,T;V') fL2(0,T;V); B : U → L 2 ( 0 , T ; V ′ ) B:U\to L^2(0,T;V') B:UL2(0,T;V) 是连续线性算子, 称为输入算子或说控制算子; y 0 ∈ V y_0\in V y0V 为初值.

现在整个式子的各个组成部分都已经有明确的定义了.

解的存在唯一性和范数估计

这个定理只是解存在唯一性定理, 并且有一个解的范数控制, 在之后POD解的误差估计中会有一些作用.

Thm1.22 上面这个问题对任意的 u ∈ U u\in U uU, f ∈ L 2 ( 0 , T ; V ′ ) f\in L^2(0,T;V') fL2(0,T;V), y 0 ∈ H y_0\in H y0H, 存在唯一的弱解 y ∈ W ( 0 , T ) y\in W(0,T) yW(0,T), 并且满足以下先验误差估计式:
∥ y ∥ W ( 0 , T ) ≤ C ( ∥ y 0 ∥ H + ∥ f ∥ L 2 ( 0 , T ; V ′ ) + ∥ u ∥ U ) \|y\|_{W(0,T)}\leq C(\|y_0\|_H+\|f\|_{L^2(0,T;V')}+\|u\|_U) yW(0,T)C(y0H+fL2(0,T;V)+uU)
其中 C > 0 C>0 C>0, 且与 y 0 , f , u y_0, f, u y0,f,u 无关. 如果 f ∈ L 2 ( 0 , T ; H ) f\in L^2(0,T;H) fL2(0,T;H), a ( t ; ⋅ , ⋅ ) a(t;\cdot,\cdot) a(t;,) t t t 无关, y 0 ∈ V y_0\in V y0V, 我们甚至可以有
y ∈ L ∞ ( 0 , T ; V ) ∩ H 1 ( 0 , T ; H ) . y\in L^{\infty}(0,T;V)\cap H^1(0,T;H) . yL(0,T;V)H1(0,T;H).

这个定理的证明, 存在唯一性, 给了一个参考文献, 翻进去看吧. 至于先验误差估计, 是基本的变分技巧和能量估计方法.
Anyway, 现在知道存在唯一的解了, 我们再把解的模样大概刻画一下, 就可以着手用POD来做个近似解逼近了. 我们把原来的问题拆分一下, 和输入 u u u 相关的放一起, 无关的放一起.

  • 第一部分:
    d d t ⟨ y ( t ) , ϕ ⟩ H + a ( t ; y ( t ) , ϕ ) = ⟨ f ( t ) , ϕ ⟩ V ′ , V ,   ∀ ϕ ∈ V ⟨ y ( 0 ) , ϕ ⟩ H = ⟨ y 0 , ϕ ⟩ H ,   ∀ ϕ ∈ H \begin{aligned} &\frac{\text{d}}{\text{d}t}\langle y(t), \phi\rangle_H+a(t;y(t),\phi)=\langle f(t),\phi\rangle_{V',V},\ \forall\phi\in V \\ &\langle y(0),\phi\rangle_H=\langle y_0,\phi\rangle_H,\ \forall \phi\in H \end{aligned} dtdy(t),ϕH+a(t;y(t),ϕ)=f(t),ϕV,V, ϕVy(0),ϕH=y0,ϕH, ϕH
    这一部分的解为 y ^ ∈ W ( 0 , T ) \hat{y} \in W(0,T) y^W(0,T).
  • 第二部分:
    d d t ⟨ y ( t ) , ϕ ⟩ H + a ( t ; y ( t ) , ϕ ) = ⟨ ( B u ) ( t ) , ϕ ⟩ V ′ , V ,   ∀ ϕ ∈ V \frac{\text{d}}{\text{d}t}\langle y(t), \phi\rangle_H+a(t;y(t),\phi)=\langle(Bu)(t),\phi\rangle_{V',V},\ \forall\phi\in V dtdy(t),ϕH+a(t;y(t),ϕ)=(Bu)(t),ϕV,V, ϕV
    这一部分的解是线性依赖于输入 u u u 的, 即存在一个线性的解算子 S : u ↦ y S:u\mapsto y S:uy, 这样的 y y y 是存在唯一的, 并是线性子空间 W 0 ( 0 , T ) W_0(0,T) W0(0,T) 中的元素.
    W 0 ( 0 , T ) = { ϕ ∈ W ( 0 , T ) ∣ ϕ ( 0 ) = 0   i n   H } W_0(0,T) = \{\phi\in W(0,T)|\phi(0)=0\ in\ H \} W0(0,T)={ϕW(0,T)ϕ(0)=0 in H}
    综合这两部分, 我们可以把问题的解写成 y = y ^ + S u y=\hat{y}+Su y=y^+Su.

分析POD在这上面的应用

我们用连续的POD来分析. 套用POD的框架, 快照子空间是由 y k ( t ) y^k(t) yk(t) 张成的, y k ( t ) ∈ V ⊂ H y^k(t)\in V\subset H yk(t)VH, 所以 X X X 可以有两种选择: H H H V V V. 这两种选择在收敛率上有区别, 稍后会说明. 假定 y k ∈ L 2 ( 0 , T ; V ) ,   k = 1 , ⋯   , ℘ y^k\in L^2(0,T;V),\ k=1,\cdots,\wp ykL2(0,T;V), k=1,,. 按照之前对连续POD的讨论, 有
R V ψ = ∑ k = 1 ℘ ∫ 0 T ⟨ ψ , y k ( t ) ⟩ V y k ( t ) d t ,   f o r   ψ ∈ V ; R H ψ = ∑ k = 1 ℘ ∫ 0 T ⟨ ψ , y k ( t ) ⟩ H y k ( t ) d t ,   f o r   ψ ∈ H . \begin{aligned} &R_V\psi=\sum\limits_{k=1}^{\wp }\int_0^T\langle\psi,y^k(t)\rangle_Vy^k(t)\text{d}t,\ for\ \psi\in V;\\ &R_H\psi=\sum\limits_{k=1}^{\wp }\int_0^T\langle\psi,y^k(t)\rangle_Hy^k(t)\text{d}t,\ for\ \psi\in H. \end{aligned} RVψ=k=10Tψ,yk(t)Vyk(t)dt, for ψV;RHψ=k=10Tψ,yk(t)Hyk(t)dt, for ψH.
回忆在连续POD分析里我们有 R X = Y X Y X ∗ R_X=Y_XY_X^* RX=YXYX. 便于描述, 记 K V = Y V ∗ , K H = Y H ∗ K_V=Y_V^*, K_H=Y_H^* KV=YV,KH=YH. 用之前已经说明白的连续POD和SVD分解的关系, Y V , Y H Y_V,Y_H YV,YH各自有 (把 X = V X=V X=V X = H X=H X=H 代入.)
{ ( σ i X , ψ i X , ϕ i X ) } i ∈ J ⊂ R 0 + × X × L 2 ( 0 , T ; R ℘ ) Y X ϕ i X = σ i X ψ i X ,   K X ψ i X = σ i X ϕ i X ,   σ i X = λ i X \begin{aligned} &\{(\sigma_i^X,\psi_i^X,\phi_i^X)\}_{i\in\mathcal{J}}\subset\mathbb{R}_0^+\times X\times L^2(0,T;\mathbb{R}^{\wp }) \\ & Y_X\phi_i^X=\sigma_i^X\psi_i^X,\ K_X\psi_i^X=\sigma_i^X\phi_i^X,\ \sigma_i^X=\sqrt{\lambda_i^X} \end{aligned} {(σiX,ψiX,ϕiX)}iJR0+×X×L2(0,T;R)YXϕiX=σiXψiX, KXψiX=σiXϕiX, σiX=λiX
X X X 分别代为 V , H V,H V,H. 下面要说, 这两组奇异值 σ i V \sigma_i^V σiV σ i H \sigma_i^H σiH 之间有些限制的关系.

Lemma1.24 假定 y k ∈ L 2 ( 0 , T ; V ) , k = 1 , ⋯   , ℘ y^k\in L^2(0,T;V),k=1,\cdots,\wp ykL2(0,T;V),k=1,,. 我们有以下三条结论:

  1. σ i H > 0 \sigma_i^H>0 σiH>0, 则 ψ i H ∈ V \psi_i^H\in V ψiHV.
  2. d d d 是一个固定的常数, σ i V = 0 \sigma_i^V=0 σiV=0 i > d i>d i>d 成立 ⇔ \Leftrightarrow σ i H = 0 \sigma_i^H=0 σiH=0 i > d i>d i>d 成立. 即 R V R_V RV 有限时 d H = d V d_H=d_V dH=dV.
  3. σ i V > 0 , ∀ i ∈ J \sigma_i^V>0,\forall i\in\mathcal{J} σiV>0,iJ ⇔ \Leftrightarrow σ i H > 0 , ∀ i ∈ J \sigma_i^H>0,\forall i\in \mathcal{J} σiH>0,iJ. (怕忘了, J \mathcal{J} J 是用 X X X 的维数定义的指标集.)

接下来说一下POD子空间. 我们求的近似解是用POD基来表示的, 近似解就应该落到POD子空间里. 先考虑一下
两个POD子空间分别为
V l = s p a n { ψ 1 V , ⋯   , ψ l V } ⊂ V H l = s p a n { ψ 1 H , ⋯   , ψ l H } ⊂ V ⊂ H \begin{aligned} &V^l=span\{\psi_1^V,\cdots,\psi_l^V\}\subset V\\ &H^l=span\{\psi_1^H,\cdots,\psi_l^H\}\subset V\subset H \end{aligned} Vl=span{ψ1V,,ψlV}VHl=span{ψ1H,,ψlH}VH
P X l P_X^l PXl 表示 V V V 中的元素到 l l l 阶POD子空间 X l X^l Xl 的投影,
v l = P X l ϕ ,   ϕ ∈ X ⇔ v l s o l v e s min ⁡ w l ∈ X l ∥ ϕ − w l ∥ V v^l=P_X^l\phi,\ \phi\in X \Leftrightarrow v^l solves \min\limits_{w^l\in X^l}\|\phi-w^l\|_V vl=PXlϕ, ϕXvlsolveswlXlminϕwlV
自然地, 我们可以想到这个投影是前 l l l 个POD基的组合, 即
P X l ϕ = ∑ i = 1 l ⟨ ϕ , ψ i X ⟩ X ψ i X P_X^l\phi = \sum\limits_{i=1}^l\langle\phi,\psi_i^X\rangle_X\psi_i^X PXlϕ=i=1lϕ,ψiXXψiX
用泛函分析的知识, 实际上也很直观, 当 l → ∞ l\to\infty l, P i X ϕ P_i^X\phi PiXϕ ϕ \phi ϕ 之间的差距应该越来越小. 下面的定理给了一个snapshot y k ( t ) y^k(t) yk(t) 和它的投影的误差估计.

Thm 1.25 y k ∈ L 2 ( 0 , T ; V ) y^k\in L^2(0,T;V) ykL2(0,T;V), k = 1 , ⋯   , ℘ k = 1,\cdots, \wp k=1,,, 则
∑ k = 1 ℘ ∫ 0 T ∥ y k ( t ) − P H l y k ( t ) ∥ V 2 d t = ∑ i = l + 1 d H λ i H ∥ ψ i H − P H l ψ i H ∥ V 2 \sum\limits_{k=1}^{\wp}\int_0^T\|y^k(t)-P_H^ly^k(t)\|_V^2\text{d}t=\sum\limits_{i=l+1}^{d_H}\lambda_i^H\|\psi_i^H-P_H^l\psi_i^H\|_V^2 k=10Tyk(t)PHlyk(t)V2dt=i=l+1dHλiHψiHPHlψiHV2
其中, d H d_H dH 是算子 R H R_H RH 的秩(可能是无穷维). 更进一步, 随 l → ∞ l\to \infty l, 在 L 2 ( 0 , T ; V ) L^2(0,T;V) L2(0,T;V) 意义下 P H l y k → y k P_H^l y^k\to y^k PHlykyk.

这个证明挺自然的. 把 y k y^k yk 按POD基展开, 代入进左式算一算.
但我们想要的是 V V V 中任意一个 ϕ \phi ϕ, 它的投影能趋近它本身. 这个能做到吗? 是有些条件的. 下面的引理陈述了这个事情.

Lemma 1.26 y k ∈ L 2 ( 0 , T ; V ) y^k\in L^2(0,T;V) ykL2(0,T;V), k = 1 , ⋯   , ℘ k=1,\cdots,\wp k=1,,; λ i H > 0 \lambda_i^H>0 λiH>0, i ∈ J i\in\mathcal{J} iJ. 那么
lim ⁡ l → ∞ ∥ ψ − P H l ψ ∥ V = 0 \lim\limits_{l\to\infty}\|\psi-P_H^l\psi\|_V=0 llimψPHlψV=0
对任意的 ψ ∈ V \psi\in V ψV 成立.

但仔细一想, 这个引理似乎没什么意思. 如果 λ i H > 0 \lambda_i^H>0 λiH>0 i ∈ J i\in\mathcal{J} iJ成立, 根据我们之前的结论, 这个算子 R H R_H RH 的非零特征值个数为快照子空间的维数, 也就是说快照子空间就是空间 X X X, 那 l → ∞ l\to\infty l, POD基张成的空间就越靠近快照子空间, 也即空间 X X X, 此时向POD子空间投影就是它本身了.

POD Galerkin逼近

现在我们用POD Galerkin逼近来搞出一个约化的问题格式. 我们先设定近似解长什么样子, 再设定新的测试函数空间, 然后把这个近似解带回原问题的格式里, 就能得到一个降维后的问题形式. 有点待定系数法那意思.

降维模型

首先, 我们的近似解应该长这个样子:
Y l ( t ) = y ^ ( t ) + ∑ i = 1 l y i l ( t ) ψ i ∈ V    a . e .   i n   [ 0 , T ] Y^l(t)=\hat{y}(t)+\sum\limits_{i=1}^ly_i^l(t)\psi_i\in V\ \ a.e.\ in\ [0,T] Yl(t)=y^(t)+i=1lyil(t)ψiV  a.e. in [0,T]
要满足 Y l ( 0 ) = y ( 0 ) = y 0 Y^l(0)=y(0)=y_0 Yl(0)=y(0)=y0, 注意 y ^ ( 0 ) = y 0 \hat{y}(0)=y_0 y^(0)=y0, 所以只要 y i l ( 0 ) = 0 y^l_i(0)=0 yil(0)=0, i = 1 , ⋯   , l i=1,\cdots,l i=1,,l成立即可. 我们的测试函数空间选为POD子空间 X l X^l Xl, 可以把降维后的模型形式写为
d d t ⟨ Y l ( t ) , ψ ⟩ H + a ( t ; Y l ( t ) , ψ ) = ⟨ ( f + B u ) ( t ) , ψ ⟩ V ′ , V ,   ∀ ψ ∈ X l   a . e . y i l ( 0 , x ) = 0 ,   i = 1 , ⋯   , l . \begin{aligned} \frac{\text{d}}{\text{d}t}\langle Y^l(t),\psi\rangle_H+a(t;Y^l(t),\psi)&=\langle(f+Bu)(t),\psi\rangle_{V',V}, \ \forall \psi\in X^l\ a.e.\\ & y_i^l(0,x)=0,\ i=1,\cdots, l. \end{aligned} dtdYl(t),ψH+a(t;Yl(t),ψ)=(f+Bu)(t),ψV,V, ψXl a.e.yil(0,x)=0, i=1,,l.
关于这个降维模型, 我们有一个命题说明它的阶也满足存在唯一性.

Prop 1.27 假定原模型解的存在唯一性条件成立, 那么刚刚定义的降维问题存在唯一解 Y l ∈ H 1 ( 0 , T ; V ) ↪ W ( 0 , T ) Y^l\in H^1(0,T;V)\hookrightarrow W(0,T) YlH1(0,T;V)W(0,T).

这个命题挺好证明的. 依次取 ψ \psi ψ 为对应空间的基 ψ i , i = 1 , ⋯   , l \psi_i,i=1,\cdots,l ψi,i=1,,l, 把每个 i i i 对应的方程写出来, 这就是个线性ODE方程组, 再用常微分方程组解的存在唯一定理套一下.
类似我们对原始模型的解做的拆分 y = y ^ + S u y=\hat{y}+Su y=y^+Su, 我们可以对降维问题的解做拆分变成 Y l = y ^ + S l u Y^l=\hat{y}+S^lu Yl=y^+Slu. 实际上这一点在之前写近似解的形式的时候就明示了. 这里要说, 类似原始解的范数估计时用的手法, 可以给出 S l u S^lu Slu 的范数估计为 ∥ S l u ∥ W ( 0 , T ) ≤ C ∥ u ∥ U \|S^lu\|_{W(0,T)}\leq C\|u\|_U SluW(0,T)CuU. 这个控制是一致的, 很厉害.
这个地方有个疑惑之处, 这个 y ^ \hat{y} y^ 是怎么处理的?

POD Galerkin逼近的先验误差估计

下面要给出一个挺重要的结论, 就是我们这么个近似解, 它到底能近似到多好的程度. 文中给出了一个先验误差估计.

Thm 1.29 任取 u ∈ U u\in U uU满足 0 ≠ S u ∈ H 1 ( 0 , T ; V ) 0\not=Su\in H^1(0,T;V) 0=SuH1(0,T;V).

  1. ℘ = 1 \wp=1 =1, snapshot y 1 ( t ) = S u y^1(t)=Su y1(t)=Su. 所得 l l l 阶POD基为 { ψ i } i = 1 l \{\psi_i\}_{i=1}^l {ψi}i=1l. 此时 y = y ^ + S u y=\hat{y}+Su y=y^+Su Y l = y ^ + S l u Y^l=\hat{y}+S^lu Yl=y^+Slu 的先验误差估计为
    ∥ Y l − y ∥ H 1 ( 0 , T ; V ) 2 ≤ C 1 { ∑ i = l + 1 d V λ i V + ∥ y t 1 − P V l y t 1 ∥ L 2 ( o , T ; V ) 2 ,   X = V ∑ i = l + 1 d H λ i H ∥ ψ i H − P H l ψ i H ∥ V 2 + ∥ y t 1 − P H l y t 1 ∥ L 2 ( 0 , T ; V ) 2 , X = H \newcommand{\norm}[1]{\| #1 \|} \norm{Y^l-y}_{H^1(0,T;V)}^2\leq C_1\left\{\begin{aligned} &\sum\limits_{i=l+1}^{d_V}\lambda_i^V+\norm{y_t^1-P_V^ly_t^1}_{L^2(o,T;V)}^2,\ X=V\\ &\sum\limits_{i=l+1}^{d_H}\lambda_i^H\norm{\psi_i^H-P_H^l\psi_i^H}_V^2+\norm{y_t^1-P_H^ly_t^1}_{L^2(0,T;V)}^2,X=H \end{aligned}\right. YlyH1(0,T;V)2C1i=l+1dVλiV+yt1PVlyt1L2(o,T;V)2, X=Vi=l+1dHλiHψiHPHlψiHV2+yt1PHlyt1L2(0,T;V)2,X=H
    其中 C 1 = C 1 ( T , γ , γ 1 , γ 2 ) C_1=C_1(T,\gamma,\gamma_1,\gamma_2) C1=C1(T,γ,γ1,γ2) 为常数.

  2. ℘ = 2 \wp=2 =2, snapshot y 1 ( t ) = S u y^1(t)=Su y1(t)=Su, y 2 ( t ) = ( S u ) t y^2(t)=(Su)_t y2(t)=(Su)t, 此时的先验误差估计为
    ∥ Y l − y ∥ H 1 ( 0 , T ; V ) 2 ≤ C 2 { ∑ i = l + 1 d V λ i V ,   X = V ∑ i = l + 1 d H λ i H ∥ ψ i H − P H l ψ i H ∥ V 2 , X = H \newcommand{\norm}[1]{\| #1 \|} \norm{Y^l-y}_{H^1(0,T;V)}^2\leq C_2\left\{\begin{aligned} &\sum\limits_{i=l+1}^{d_V}\lambda_i^V,\ X=V\\ &\sum\limits_{i=l+1}^{d_H}\lambda_i^H\norm{\psi_i^H-P_H^l\psi_i^H}_{V}^2, X=H \end{aligned}\right. YlyH1(0,T;V)2C2i=l+1dVλiV, X=Vi=l+1dHλiHψiHPHlψiHV2,X=H
    其中 C 2 = C 2 ( T , γ , γ 1 , γ 2 ) C_2=C_2(T,\gamma,\gamma_1,\gamma_2) C2=C2(T,γ,γ1,γ2) 为常数.

  3. 如果对任意的 u ~ ∈ U \tilde{u}\in U u~U, S u ~ ∈ H 1 ( 0 , T ; V ) S\tilde{u}\in H^1(0,T;V) Su~H1(0,T;V), 并且对所有的 i ∈ J i\in \mathcal{J} iJ, 都有 λ i H > 0 \lambda_i^H>0 λiH>0, 那么
    lim ⁡ l → ∞ ∥ S − S l ∥ L ( U , W ( 0 , T ) ) = 0 \lim\limits_{l\to\infty}\|S-S^l\|_{\mathcal{L}(U,W(0,T))}=0 llimSSlL(U,W(0,T))=0
    也就是说POD基足够多, 近似解和精确解的误差就趋向0.

上面这个定理是在 H 1 ( 0 , T ; V ) H^1(0,T;V) H1(0,T;V) 下考虑的, 如果我们用 L 2 ( 0 , T ; V ) L^2(0,T;V) L2(0,T;V), 并且引入从 H H H V l V^l Vl 的正交投影 P H , V l l P_{H,V^l}^l PH,Vll, 对只取一个snapshot的情形可以有更简洁的先验误差估计:

Proposition 1.32 和 Thm 1.29 第一条一样的假定.
∥ Y 1 − y ∥ L 2 ( 0 , T ; V ) 2 ≤ C { ∑ i = l + 1 d V λ i V ∥ ψ i V − P H , V l l ψ i V ∥ V 2 , X = V ∑ i = l + 1 d H λ i H ∥ ψ i H ∥ V 2 ,   X = H \newcommand{\norm}[1]{\|#1\|} \norm{Y^1-y}_{L^2(0,T;V)}^2\leq C\left\{\begin{aligned} &\sum\limits_{i=l+1}^{d_V}\lambda_i^V\norm{\psi_i^V-P_{H,V^l}^l\psi_i^V}_V^2, X=V\\ &\sum\limits_{i=l+1}^{d_H}\lambda_i^H\norm{\psi_i^H}_V^2,\ X=H \end{aligned}\right. Y1yL2(0,T;V)2Ci=l+1dVλiVψiVPH,VllψiVV2,X=Vi=l+1dHλiHψiHV2, X=H
其中 C = C ( T , γ , γ 1 , γ 2 ) C=C(T,\gamma,\gamma_1,\gamma_2) C=C(T,γ,γ1,γ2) 是常数.

为了更好的理解, 这里举一个例子.

Example 1.31
回顾问题的模型描述为
d d t ⟨ y ( t ) , ϕ ⟩ H + a ( t ; y ( t ) , ϕ ) = ⟨ ( f + B u ) ( t ) , ϕ ⟩ V ′ , V ,   ∀ ϕ ∈ V ⟨ y ( 0 ) , ϕ ⟩ H = ⟨ y 0 , ϕ ⟩ H ,   ∀ ϕ ∈ H \begin{aligned} &\frac{\text{d}}{\text{d}t}\langle y(t), \phi\rangle_H+a(t;y(t),\phi)=\langle(f+Bu)(t),\phi\rangle_{V',V},\ \forall\phi\in V \\ &\langle y(0),\phi\rangle_H=\langle y_0,\phi\rangle_H,\ \forall \phi\in H \end{aligned} dtdy(t),ϕH+a(t;y(t),ϕ)=(f+Bu)(t),ϕV,V, ϕVy(0),ϕH=y0,ϕH, ϕH
t ∈ [ 0 , T ] t\in[0,T] t[0,T], Ω = ( 0 , 2 ) ⊂ R \Omega=(0,2)\subset\mathbb{R} Ω=(0,2)R. V = H 0 1 ( Ω ) V=H_0^1(\Omega) V=H01(Ω), H = L 2 ( Ω ) H=L^2(\Omega) H=L2(Ω), u = 0 u=0 u=0, y 0 = sin ⁡ ( π x ) y_0=\sin(\pi x) y0=sin(πx),
f ( t , x ) = e − t ( π 2 − 1 ) sin ⁡ ( π x ) f(t,x)=e^{-t}(\pi^2-1)\sin(\pi x) f(t,x)=et(π21)sin(πx)
a ( t ; ϕ , ψ ) = ∫ Ω ϕ ′ ( x ) ψ ′ ( x ) d x ,   ∀ ϕ , ψ ∈ V a(t;\phi,\psi)=\int_{\Omega}\phi'(x)\psi'(x)\text{d}x,\ \forall\phi,\psi\in V a(t;ϕ,ψ)=Ωϕ(x)ψ(x)dx, ϕ,ψV
那么模型问题实例为
d d t ⟨ y ( t , x ) , ϕ ⟩ L 2 ( Ω ) + ⟨ ∂ y ( t , x ) ∂ x , d ϕ d x ⟩ L 2 ( Ω ) = ⟨ e − t ( π 2 − 1 ) sin ⁡ ( π x ) , ϕ ⟩ H − 1 ( Ω ) , H 0 1 ( Ω ) , ∀ ϕ ∈ H 0 1 ( Ω ) ⟨ y ( 0 , x ) , ϕ ⟩ L 2 ( Ω ) = ⟨ sin ⁡ ( π x ) , ϕ ⟩ L 2 ( Ω ) ,   ∀ ϕ ∈ L 2 ( Ω ) \begin{aligned} \frac{\text{d}}{\text{d}t}\langle y(t,x), \phi\rangle_{L^2(\Omega)}+\langle\frac{\partial y(t,x)}{\partial x}, \frac{\text{d}\phi}{\text{d}x}\rangle_{L^2(\Omega)}=\langle e^{-t}(\pi^2-1)\sin(\pi x),\phi\rangle_{H^{-1}(\Omega), H_0^1(\Omega)}&,\\ \forall\phi\in H_0^1(\Omega) & \\ \langle y(0,x),\phi\rangle_{L^2(\Omega)}=\langle \sin(\pi x),\phi\rangle_{L^2(\Omega)},\ \forall \phi\in L^2(\Omega)& \end{aligned} dtdy(t,x),ϕL2(Ω)+xy(t,x),dxdϕL2(Ω)=et(π21)sin(πx),ϕH1(Ω),H01(Ω)ϕH01(Ω)y(0,x),ϕL2(Ω)=sin(πx),ϕL2(Ω), ϕL2(Ω),
化为
⟨ y t ( t , x ) , ϕ ⟩ L 2 ( Ω ) + ⟨ y x x ( t , x ) , ϕ ⟩ L 2 ( Ω ) = ⟨ e − t ( π 2 − 1 ) sin ⁡ ( π x ) , ϕ ⟩ L 2 ( Ω ) ) , ∀ ϕ ∈ H 0 1 ( Ω ) ⟨ y ( 0 , x ) , ϕ ⟩ L 2 ( Ω ) = ⟨ sin ⁡ ( π x ) , ϕ ⟩ L 2 ( Ω ) ,   ∀ ϕ ∈ L 2 ( Ω ) \begin{aligned} \langle y_t(t,x), \phi\rangle_{L^2(\Omega)}+\langle y_{xx}(t,x), \phi\rangle_{L^2(\Omega)}=\langle e^{-t}(\pi^2-1)\sin(\pi x),\phi\rangle_{L^2(\Omega))}&,\\ \forall\phi\in H_0^1(\Omega)& \\ \langle y(0,x),\phi\rangle_{L^2(\Omega)}=\langle \sin(\pi x),\phi\rangle_{L^2(\Omega)},\ \forall \phi\in L^2(\Omega)& \end{aligned} yt(t,x),ϕL2(Ω)+yxx(t,x),ϕL2(Ω)=et(π21)sin(πx),ϕL2(Ω))ϕH01(Ω)y(0,x),ϕL2(Ω)=sin(πx),ϕL2(Ω), ϕL2(Ω),
这个问题的精确解一眼即可看出是 y ( t , x ) = e − t sin ⁡ ( π x ) y(t,x)=e^{-t}\sin(\pi x) y(t,x)=etsin(πx). 快照子空间是用精确解对时间做采样, 那么我们得到的快照子空间 V = s p a n { e − t sin ⁡ ( π x ) ∣ t ∈ [ 0 , T ] } = { α ψ ∣ α ∈ R , ψ = sin ⁡ ( π x ) } \frak{V}=span\{e^{-t}\sin(\pi x)|t\in[0,T]\}=\{\alpha\psi|\alpha\in\mathbb{R},\psi=\sin(\pi x)\} V=span{etsin(πx)t[0,T]}={αψαR,ψ=sin(πx)}, 它是一维的, 所以如果取 X = H X=H X=H, 我们搞出来的算子 R H R_H RH 只有一个正特征(其余都是零), 对应的特征向量(即1阶POD基) 为 ψ 1 H = ψ \psi_1^H=\psi ψ1H=ψ. 假定 Y 1 ( t , x ) = y 1 1 ( t ) ψ 1 H Y^1(t,x)=y_1^1(t)\psi_1^H Y1(t,x)=y11(t)ψ1H, 在降维模型中取测试函数为前 l l l 阶POD基(此处只有 ψ 1 H \psi_1^H ψ1H), 可以获得方程组为:

⟨ Y t 1 ( t , x ) , ψ 1 H ⟩ L 2 ( Ω ) + ⟨ Y x 1 ( t , x ) , ( ψ 1 H ) x ⟩ L 2 ( Ω ) = ⟨ e − t ( π 2 − 1 ) sin ⁡ ( π x ) , ψ 1 H ⟩ L 2 ( Ω ) ) \langle Y^1_t(t,x),\psi_1^H\rangle_{L^2(\Omega)}+\langle Y^1_{x}(t,x),(\psi_1^H)_x\rangle_{L^2(\Omega)}=\langle e^{-t}(\pi^2-1)\sin(\pi x),\psi_1^H\rangle_{L^2(\Omega))} Yt1(t,x),ψ1HL2(Ω)+Yx1(t,x),(ψ1H)xL2(Ω)=et(π21)sin(πx),ψ1HL2(Ω))
⇒ \Rightarrow
∥ ψ 1 H ∥ L 2 ( Ω ) 2 ( y 1 1 ( t ) ) t + ∥ ( ψ 1 H ) x ∥ L 2 ( Ω ) 2 y 1 1 ( t ) = ⟨ e − t ( π 2 − 1 ) sin ⁡ ( π x ) , ψ 1 H ⟩ L 2 ( Ω ) ) \|\psi_1^H\|_{L^2(\Omega)}^2(y_1^1(t))_t+\|(\psi_1^H)_x\|_{L^2(\Omega)}^2y_1^1(t)=\langle e^{-t}(\pi^2-1)\sin(\pi x),\psi_1^H\rangle_{L^2(\Omega))} ψ1HL2(Ω)2(y11(t))t+(ψ1H)xL2(Ω)2y11(t)=et(π21)sin(πx),ψ1HL2(Ω))
⇒ \Rightarrow
( y 1 1 ( t ) ) t + π 2 y 1 1 ( t ) = e − t ( π 2 − 1 ) (y_1^1(t))_t+\pi^2y_1^1(t)=e^{-t}(\pi^2-1) (y11(t))t+π2y11(t)=et(π21)
再加上边界条件 Y 1 ( 0 , x ) = ⟨ y 0 , ψ 1 H ⟩ L 2 ( Ω ) Y^1(0,x)=\langle y_0,\psi_1^H\rangle_{L^2(\Omega)} Y1(0,x)=y0,ψ1HL2(Ω),
解为 y 1 1 ( t ) = e − t y_1^1(t)=e^{-t} y11(t)=et. 所以 Y 1 ( t , x ) = e − t sin ⁡ ( π x ) Y^1(t,x)=e^{-t}\sin(\pi x) Y1(t,x)=etsin(πx). 和精确解没有误差.
这个用前面给的误差估计定理Thm 1.29的第一种情形取 X = H X=H X=H 来带入一验证, 就知道确实没有误差.

因为篇幅限制, 在这里又要断一下了.

参考文献


  1. Gubisch M, Volkwein S. Proper orthogonal decomposition for linear-quadratic optimal control[J]. Model reduction and approximation: theory and algorithms, 2017, 15(1). ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值