POD方法读书笔记(三) 最终话

不知道为什么说我正文字数过多. 难道因为公式太多了?

本文整理 (目前实际上就是先读一遍) 模型约化文献集第一部分第一章1的POD (Proper Orthogonal Decomposition) 方法和一些应用分析.

更具体的应用实例

Linear Quadratic Optimal Control 是由Evolution Problem 引出一类问题. 我们在这里回顾一下 Evolution Problem.
d d t ⟨ y ( t ) , φ ⟩ H + a ( t ; y ( t ) , φ ) = ⟨ ( f + B u ) ( t ) , φ ⟩ V ′ , V , ∀ φ ∈ V , a . e .   i n ( 0 , T ] ⟨ y ( 0 ) , φ ⟩ H = ⟨ y 0 , φ ⟩ H ,   ∀ φ ∈ H \newcommand{\lmrm}[1]{\langle #1 \rangle} \newcommand{\dd}[1]{\frac{\text{d}}{\text{d} #1}} \newcommand{\vphi}{\varphi} \begin{aligned} &\dd{t}\lmrm{y(t),\vphi}_{H}+a(t;y(t),\vphi)=\lmrm{(f+Bu)(t),\vphi}_{V',V},\forall \vphi\in V,a.e.\ in(0,T]\\ &\lmrm{y(0),\vphi}_H=\lmrm{y_0,\vphi}_H,\ \forall \vphi\in H \end{aligned} dtdy(t),φH+a(t;y(t),φ)=(f+Bu)(t),φV,V,φV,a.e. in(0,T]y(0),φH=y0,φH, φH
这是非常General的Form, 下面是与它相关的定义和说明:

  1. V , H V, H V,H 是实的可分Hilbert空间, 满足 V ↪ H = H ′ ↪ V ′ V\hookrightarrow H=H'\hookrightarrow V' VH=HV.
  2. ∣ a ( t ; φ , ψ ) ∣ ≤ γ ∥ φ ∥ V ∥ ψ ∥ V ;   a ( t ; ψ , ψ ) ≥ γ 1 ∥ ψ ∥ V 2 − γ 2 ∥ ψ ∥ H 2 |a(t;\varphi,\psi)|\leq \gamma \|\varphi\|_{V}\|\psi\|_V;\ a(t;\psi,\psi)\geq\gamma_1\|\psi\|_V^2-\gamma_2\|\psi\|_H^2 a(t;φ,ψ)γφVψV; a(t;ψ,ψ)γ1ψV2γ2ψH2 是对称双线性型.
  3. u ∈ U = L 2 ( 0 , T ; R N u ) u\in U=L^2(0,T;\R^{N_u}) uU=L2(0,T;RNu)控制(control).
  4. B : U → L 2 ( 0 , T ; V ′ ) B:U\to L^2(0,T;V') B:UL2(0,T;V) 是线性算子.
  5. f ∈ L 2 ( 0 , T ; V ′ ) f\in L^2(0,T;V') fL2(0,T;V), y 0 ∈ H y_0\in H y0H.
  6. W ( 0 , T ) : = { ϕ ∈ L 2 ( 0 , T ; V ) ∣ ϕ t ∈ L 2 ( 0 , T ; V ′ ) } W(0,T):=\{\phi\in L^2(0,T;V)|\phi_t\in L^2(0,T;V')\} W(0,T):={ϕL2(0,T;V)ϕtL2(0,T;V)} 是解 y y y 所在的空间.
  7. W 0 ( 0 , T ) : = { ϕ ∈ W ( 0 , T ) ∣ ϕ ( 0 ) = 0   i n   H } W_0(0,T):=\{\phi\in W(0,T)|\phi(0)=0\ in\ H\} W0(0,T):={ϕW(0,T)ϕ(0)=0 in H}, 一会儿会用到.

把原来的问题拆分成与控制 u u u 无关的和相关的两部分,
第一部分:
d d t ⟨ y ( t ) , φ ⟩ H + a ( t ; y ( t ) , φ ) = ⟨ f ( t ) , φ ⟩ V ′ , V , ∀ φ ∈ V , a . e .   i n ( 0 , T ] ⟨ y ( 0 ) , φ ⟩ H = ⟨ y 0 , φ ⟩ H ,   ∀ φ ∈ H \newcommand{\lmrm}[1]{\langle #1 \rangle} \newcommand{\dd}[1]{\frac{\text{d}}{\text{d} #1}} \newcommand{\vphi}{\varphi} \begin{aligned} &\dd{t}\lmrm{y(t),\vphi}_{H}+a(t;y(t),\vphi)=\lmrm{f(t),\vphi}_{V',V},\forall \vphi\in V,a.e.\ in(0,T]\\ &\lmrm{y(0),\vphi}_H=\lmrm{y_0,\vphi}_H,\ \forall \vphi\in H \end{aligned} dtdy(t),φH+a(t;y(t),φ)=f(t),φV,V,φV,a.e. in(0,T]y(0),φH=y0,φH, φH
有之前说过的定理保证这个方程在 W ( 0 , T ) W(0,T) W(0,T) 中存在唯一解, 记为 y ^ \hat{y} y^.
第二部分:
d d t ⟨ y ( t ) , φ ⟩ H + a ( t ; y ( t ) , φ ) = ⟨ B u ( t ) , φ ⟩ V ′ , V , ∀ φ ∈ V , a . e .   i n ( 0 , T ] ⟨ y ( 0 ) , φ ⟩ H = ⟨ 0 , φ ⟩ H ,   ∀ φ ∈ H \newcommand{\lmrm}[1]{\langle #1 \rangle} \newcommand{\dd}[1]{\frac{\text{d}}{\text{d} #1}} \newcommand{\vphi}{\varphi} \begin{aligned} &\dd{t}\lmrm{y(t),\vphi}_{H}+a(t;y(t),\vphi)=\lmrm{Bu(t),\vphi}_{V',V},\forall \vphi\in V,a.e.\ in(0,T]\\ &\lmrm{y(0),\vphi}_H=\lmrm{0,\vphi}_H,\ \forall \vphi\in H \end{aligned} dtdy(t),φH+a(t;y(t),φ)=Bu(t),φV,V,φV,a.e. in(0,T]y(0),φH=0,φH, φH
也用之前的定理保证这个方程在 W 0 ( 0 , T ) W_0(0,T) W0(0,T) 中存在唯一解. 并且有线性映射 S : U → W 0 ( 0 , T ) S:U\to W_0(0,T) S:UW0(0,T), 使得输入 u u u, 对应的解为 S u Su Su.
综合这两部分, 原问题的解可以表述为 y = y ^ + S u y=\hat{y}+Su y=y^+Su. 我们把输入 u u u 和对应的解 y y y 组合成一个pair: x : = ( y , u ) ∈ W ( 0 , T ) × U = : X x:=(y, u)\in W(0,T)\times U=:X x:=(y,u)W(0,T)×U=:X, 解的存在唯一性定理保证这个 X X X 一定非空. 我们的optimal control问题就由此出发.

问题形式

限制 u ∈ U a d : = { u ∈ U ∣ u a ≤ u ≤ u b   i n   R n u   a . e .   i n [ 0 , T ] } u\in U_{ad}:=\{u\in U|u_a\leq u\leq u_b\ in\ \R^{n_u}\ a.e.\ in[0,T]\} uUad:={uUuauub in Rnu a.e. in[0,T]}, 这里的小于等于意味着每个分量都小于等于. 这样的 U a d U_{ad} Uad U U U 中是闭的, 凸的, 有界的. 用这个 u u u 的限制, 可以得到一个 x = ( y , u ) x=(y,u) x=(y,u) 的限制: x ∈ X a d : = { ( y ^ + S u , u ) ∈ X ∣ u ∈ U a d } x\in X_{ad}:=\{(\hat{y}+Su,u)\in X|u\in U_{ad}\} xXad:={(y^+Su,u)XuUad}. 我们的二次最优控制就限制在这个范围上.

先给出目标函数:
J ( x ) = σ Q 2 ∫ 0 T ∥ y ( t ) − y Q ( t ) ∥ H 2 d t + σ Ω 2 ∥ y ( T ) − y Ω ∥ H 2 + σ Q 2 ∥ u ∥ U 2 J(x)=\frac{\sigma_Q}{2}\int_0^T\|y(t)-y_Q(t)\|_H^2\text{d}t+\frac{\sigma_{\Omega}}{2}\|y(T)-y_{\Omega}\|_H^2+\frac{\sigma_Q}{2}\|u\|_U^2 J(x)=2σQ0Ty(t)yQ(t)H2dt+2σΩy(T)yΩH2+2σQuU2
其中的 σ Q , σ Ω ≥ 0 \sigma_Q,\sigma_{\Omega}\geq 0 σQ,σΩ0, σ > 0 \sigma>0 σ>0; ( y Q , y Ω ) ∈ H : = L 2 ( 0 , T ; H ) × H (y_Q,y_{\Omega})\in\mathcal{H}:=L^2(0,T;H)\times H (yQ,yΩ)H:=L2(0,T;H)×H, 是给定的我们的想要的状态. 极小化 J J J, 就是想让 y y y 尽可能靠近它们, 同时保持 u u u 足够小. 上面这个关于 x x x J ( x ) J(x) J(x), 实际上就是关于 u u u J ^ ( u ) \hat{J}(u) J^(u):
J ^ ( u ) = J ( ( y ^ + S u , u ) ) = σ Q 2 ∫ 0 T ∥ S u − ( y Q ( t ) − y ^ ( t ) ) ∥ H 2 d t + σ Ω 2 ∥ S u − ( y Ω − y ^ ( T ) ) ∥ H 2 + σ 2 ∥ u ∥ U 2 \newcommand{\norm}[1]{\| #1\|} \begin{aligned} \hat{J}(u)=&J((\hat{y}+Su,u))\\ =&\frac{\sigma_Q}{2}\int_0^T\norm{Su-(y_Q(t)-\hat{y}(t))}_H^2\text{d}t\\ &+\frac{\sigma_{\Omega}}{2}\norm{Su-(y_{\Omega}-\hat{y}(T))}_H^2\\ &+\frac{\sigma}{2}\norm{u}_U^2 \end{aligned} J^(u)==J((y^+Su,u))2σQ0TSu(yQ(t)y^(t))H2dt+2σΩSu(yΩy^(T))H2+2σuU2
min ⁡ x ∈ X a d J ( x ) ⇔ min ⁡ u ∈ U a d J ^ ( u ) \min\limits_{x\in X_{ad}}J(x)\Leftrightarrow \min\limits_{u\in U_{ad}}\hat{J}(u) xXadminJ(x)uUadminJ^(u)
所以我们接下来就考虑关于控制 u u u 的极小化问题.
min ⁡ u ∈ U a d J ^ ( u ) (问题形式) \min\limits_{u\in U_{ad}}\hat{J}(u)\tag{问题形式} uUadminJ^(u)()

简化目标表达式

注意, 我们的 H \mathcal{H} H 是用两个Hilbert空间直积定义的, 在一般的直积的内积定义下它也是Hilbert空间, 对 ψ , ϕ ∈ H \psi,\phi\in\mathcal{H} ψ,ϕH, 我们可以写为 ψ = ( ψ 1 ( t ) , ψ 2 ) , ϕ = ( ϕ 1 ( t ) , ϕ 2 ) \psi=(\psi_1(t),\psi_2),\phi=(\phi_1(t),\phi_2) ψ=(ψ1(t),ψ2),ϕ=(ϕ1(t),ϕ2). 它俩在 H \mathcal{H} H 中距离有这样的表达:
∥ ψ − ϕ ∥ H 2 = ∫ 0 T ∥ ψ 1 ( t ) − ϕ 1 ( t ) ∥ H 2 d t + ∥ ψ 2 − ϕ 2 ∥ H 2 \newcommand{\norm}[1]{\| #1\|} \norm{\psi-\phi}_{\mathcal{H}}^2=\int_0^T\norm{\psi_1(t)-\phi_1(t)}_H^2\text{d}t+\norm{\psi_2-\phi_2}_H^2 ψϕH2=0Tψ1(t)ϕ1(t)H2dt+ψ2ϕ2H2
所以我们的目标函数 J ^ ( u ) \hat{J}(u) J^(u) 可以用 H \mathcal{H} H 上的范数来重写一下:
J ^ ( u ) = 1 2 ∥ ( σ Q S u ( t ) , σ Ω S u ( T ) ) − ( σ Q ( y Q ( t ) − y ^ ( t ) ) , σ Ω ( y Ω − y ^ ( T ) ) ) ∥ H 2 + σ 2 ∥ u ∥ U 2 . \newcommand{\norm}[1]{\| #1\|} \begin{aligned} \hat{J}(u)=&\frac{1}{2}\norm{(\sqrt{\sigma_Q}Su(t),\sqrt{\sigma_{\Omega}}Su(T))-(\sqrt{\sigma_Q}(y_Q(t)-\hat{y}(t)),\sqrt{\sigma_{\Omega}}(y_{\Omega}-\hat{y}(T)))}_H^2\\ &+\frac{\sigma}{2}\norm{u}_U^2. \end{aligned} J^(u)=21(σQ Su(t),σΩ Su(T))(σQ (yQ(t)y^(t)),σΩ (yΩy^(T)))H2+2σuU2.
这么大坨看着太累, 为了简便, 记

  • E 1 : W ( 0 , T ) → L 2 ( 0 , T ; H ) \mathcal{E}_1:W(0,T)\to L^2(0,T;H) E1:W(0,T)L2(0,T;H) 为嵌入映射 (这里就是恒等映射).
  • E 2 : W ( 0 , T ) → H , ϕ ↦ ϕ ( T ) \mathcal{E}_2:W(0,T)\to H, \phi\mapsto\phi(T) E2:W(0,T)H,ϕϕ(T).
  • G : U → H , G = ( σ Q E 1 S , σ Ω E 2 S ) , u ↦ ( σ Q S u , σ Ω S u ( T ) ) G:U\to \mathcal{H}, G=(\sqrt{\sigma_Q}\mathcal{E}_1S,\sqrt{\sigma_{\Omega}}\mathcal{E}_2S),u\mapsto(\sqrt{\sigma_Q}Su,\sqrt{\sigma_{\Omega}}Su(T)) G:UH,G=(σQ E1S,σΩ E2S),u(σQ Su,σΩ Su(T)).
  • z d : = ( σ Q ( y Q ( t ) − y ^ ( t ) ) , σ Ω ( y Ω − y ^ ( T ) ) ) ∈ H z_d:=(\sqrt{\sigma_Q}(y_Q(t)-\hat{y}(t)),\sqrt{\sigma_{\Omega}}(y_{\Omega}-\hat{y}(T)))\in\mathcal{H} zd:=(σQ (yQ(t)y^(t)),σΩ (yΩy^(T)))H

现在, 原来的目标函数可以写成
J ^ ( u ) = 1 2 ∥ G u − z d ∥ H 2 + σ 2 ∥ u ∥ U 2 \newcommand{\norm}[1]{\| #1\|} \hat{J}(u)=\frac{1}{2}\norm{Gu-z_d}_{\mathcal{H}}^2+\frac{\sigma}{2}\norm{u}_U^2 J^(u)=21GuzdH2+2σuU2
这个形式, 是不是就看着简单多了呢.

最优解的存在唯一性

这一节主要就是给一个定理, 保证上面这个极小化问题的解是存在唯一的.

Thm 1.34 U , H U, \mathcal{H} U,H 为两个Hilbert空间, U a d ⊂ U U_{ad}\subset U UadU是非空有界闭凸子集, z d ∈ H z_d\in \mathcal{H} zdH, σ ≥ 0 \sigma\geq 0 σ0, G : U → H G:U\to\mathcal{H} G:UH 是连续线性算子, 则对如下问题存在最优解 u ˉ \bar{u} uˉ:
min ⁡ u ∈ U a d J ^ ( u ) = 1 2 ∥ G u − z d ∥ H 2 + σ 2 ∥ u ∥ U 2 \newcommand{\norm}[1]{\| #1\|} \min\limits_{u\in U_{ad}}\hat{J}(u)=\frac{1}{2}\norm{Gu-z_d}_{\mathcal{H}}^2+\frac{\sigma}{2}\norm{u}_U^2 uUadminJ^(u)=21GuzdH2+2σuU2
如果 σ > 0 \sigma >0 σ>0 或者 G G G 是单射, 这个最优解是唯一的.

显然这个定理是给我们的问题量身打造的. 接下来照抄一遍即可. 用两个定理, 先说有界的 U a d U_{ad} Uad 存在唯一解, 再说如果我们的 u a , u b u_a,u_b ua,ub 可能取到无穷, 这个解的存在唯一性仍然是可以保证的.

一阶必要最优性条件

回到我们的问题. 既然解的存在唯一性有保证了, 继续求下去就有意义了. 用我们高中就知道的知识, 想求极值点, 能用导数就好办. 这里也作同样的考虑.

先大概地分析一下. 如果 u ˉ \bar{u} uˉ min ⁡ u ∈ U a d J ^ ( u ) \min\limits_{u\in U_{ad}}\hat{J}(u) uUadminJ^(u) 的解, 那从 u ˉ \bar{u} uˉ 出发, 往任意可行的 u u u 靠近任意可行的步长, 得到 u ˉ + ϵ ( u − u ˉ ) \bar{u}+\epsilon(u-\bar{u}) uˉ+ϵ(uuˉ), 它对应的目标函数值应满足 J ^ ( u ˉ + ϵ ( u − u ˉ ) ) ≥ J ^ ( u ˉ ) \hat{J}(\bar{u}+\epsilon(u-\bar{u}))\geq \hat{J}(\bar{u}) J^(uˉ+ϵ(uuˉ))J^(uˉ). 这个任意步长 ϵ \epsilon ϵ 就提示, 我们正接近我们想要的导数. 再进一步, 乘上 1 / ϵ 1/\epsilon 1/ϵ, 再让步长 ϵ ↓ 0 \epsilon\downarrow 0 ϵ0, 我们可以以此定义一个导数.

G a ^ t e a u x G\hat{a}teaux Ga^teaux 导数

给一个函数空间上的导数定义.

B 1 , B 2 B_1,B_2 B1,B2 为实的Banach空间, U ⊂ B 1 U\subset B_1 UB1 为开集. F : U → B 2 F:U\to B_2 F:UB2, 对给定的 u ∈ U u\in U uU, h ∈ B 1 h\in B_1 hB1,
D F ( u ; h ) : = lim ⁡ ϵ ↓ 0 1 ϵ ( F ( u + ϵ h ) − F ( u ) ) . DF(u;h):=\lim\limits_{\epsilon\downarrow0}\frac{1}{\epsilon}(F(u+\epsilon h)-F(u)). DF(u;h):=ϵ0limϵ1(F(u+ϵh)F(u)).
若存在 K : U → B 2 K:U\to B_2 K:UB2 满足
D F ( u ; h ) = K h ,   ∀ h ∈ U DF(u;h)=Kh,\ \forall h\in U DF(u;h)=Kh, hU
则称 F F F u u u G a ^ t e a u x G\hat{a}teaux Ga^teaux 可导, 记 K K K F ′ ( u ) F'(u) F(u), 称为 F F F u u u 处的 G a ^ t e a u x G\hat{a}teaux Ga^teaux导数. 以后简称导数 (为了好打.)

我们讨论的算子 J : U → R J:U\to \R J:UR 是作用在Hilbert空间上的, J J J 的导数可以用 Riesz 同构来刻画. D J ^ ( u ; v ) D\hat{J}(u;v) DJ^(u;v) 实际上可以看成作用在 v ∈ U v\in U vU 上的线性泛函, 所以 J ^ ′ ( u ) ∈ U ′ \hat{J}'(u)\in U' J^(u)U, 所以存在唯一的 τ − 1 J ^ ′ ( u ) ∈ U \tau^{-1}\hat{J}'(u)\in U τ1J^(u)U 满足
⟨ τ − 1 J ^ ′ ( u ) , v ⟩ U = ⟨ J ^ ′ ( u ) , v ⟩ U ′ , U \langle \tau^{-1}\hat{J}'(u),v\rangle_U=\langle\hat{J}'(u),v\rangle_{U',U} τ1J^(u),vU=J^(u),vU,U
τ − 1 J ^ ′ ( u ) \tau^{-1}\hat{J}'(u) τ1J^(u) 作用在 v v v 上 (以内积的意义) 和导数作用 (按导数的意义) 是一致的. 为了简化, 我们就记 τ − 1 J ^ ′ ( u ) = : ∇ J ^ ( u ) \tau^{-1}\hat{J}'(u)=:\nabla\hat{J}(u) τ1J^(u)=:J^(u).
用这个梯度来表述导数作用, 我们的最优解应该满足的条件就是
⟨ ∇ J ^ ( u ˉ ) , u − u ˉ ⟩ U ≥ 0 ,   ∀ u ∈ U a d \langle\nabla\hat{J}(\bar{u}),u-\bar{u}\rangle_U\geq 0,\ \forall u\in U_{ad} J^(uˉ),uuˉU0, uUad
现在的问题是, 这个梯度应该长什么样子呢? 我们先回忆一下 J ^ ( u ) \hat{J}(u) J^(u) 表达式:
J ^ ( u ) = 1 2 ∥ G u − z d ∥ H 2 + σ 2 ∥ u ∥ U 2 \newcommand{\norm}[1]{\| #1\|} \hat{J}(u)=\frac{1}{2}\norm{Gu-z_d}_{\mathcal{H}}^2+\frac{\sigma}{2}\norm{u}_U^2 J^(u)=21GuzdH2+2σuU2
有几种办法可以求这个梯度. 我们这里直接用矩阵来类比推断一下, 应该写成
∇ J ^ ( u ) = G ∗ ( G u − z d ) + σ u ,   f o r   u ∈ U \nabla\hat{J}(u)=G^*(Gu-z_d)+\sigma u,\ for\ u\in U J^(u)=G(Guzd)+σu, for uU
如此, 我们得到我们想要的一阶最优必要条件.

Thm 1.40 假定 u ˉ \bar{u} uˉ 是我们目标问题的最优解, 那它满足如下的变分不等式:
⟨ ∇ J ^ ( u ˉ ) , u − u ˉ ⟩ U ≥ 0 ,   ∀ u ∈ U a d \langle\nabla\hat{J}(\bar{u}),u-\bar{u}\rangle_U\geq 0,\ \forall u\in U_{ad} J^(uˉ),uuˉU0, uUad
其中的 ∇ J ^ ( u ) \nabla\hat{J}(u) J^(u)
∇ J ^ ( u ) = G ∗ ( G u − z d ) + σ u ,   f o r   u ∈ U \nabla\hat{J}(u)=G^*(Gu-z_d)+\sigma u,\ for\ u\in U J^(u)=G(Guzd)+σu, for uU

那么我们最优解的一阶必要条件转化为
0 ≤ ⟨ G ∗ ( G u ˉ − z d ) + σ u ˉ , u − u ˉ ⟩ U = ⟨ G u ˉ − z d , G ( u − u ˉ ) ⟩ H + ⟨ σ u , u − u ˉ ⟩ U \newcommand{\lmrm}[1]{\langle #1 \rangle} \newcommand{\bu}{\bar{u}} \begin{aligned} 0\leq&\lmrm{G^*(G\bu-z_d)+\sigma\bu,u-\bu}_U\\ =&\lmrm{G\bu-z_d,G(u-\bu)}_{\mathcal{H}}+\lmrm{\sigma u,u-\bu}_U \end{aligned} 0=G(Guˉzd)+σuˉ,uuˉUGuˉzd,G(uuˉ)H+σu,uuˉU
回顾一下, G = ( σ Q E 1 S , σ Ω E 2 S ) , u ↦ ( σ Q S u , σ Ω S u ( T ) ) G=(\sqrt{\sigma_Q}\mathcal{E}_1S,\sqrt{\sigma_{\Omega}}\mathcal{E}_2S),u\mapsto(\sqrt{\sigma_Q}Su,\sqrt{\sigma_{\Omega}}Su(T)) G=(σQ E1S,σΩ E2S),u(σQ Su,σΩ Su(T)), z d : = ( σ Q ( y Q ( t ) − y ^ ( t ) ) , σ Ω ( y Ω − y ^ ( T ) ) ) ∈ H z_d:=(\sqrt{\sigma_Q}(y_Q(t)-\hat{y}(t)),\sqrt{\sigma_{\Omega}}(y_{\Omega}-\hat{y}(T)))\in\mathcal{H} zd:=(σQ (yQ(t)y^(t)),σΩ (yΩy^(T)))H, 我们想搞出从control u u u 到解 y y y 的映射 S S S 是很困难的, 但如果给一个控制 u u u, 我们去解evolution problem是可以做到的. 下面就来想, 怎么把这个最优性条件变成解evolution problem? 表达式的第二项不需要再约化了, 我们看看第一项怎么办.
⟨ G u ˉ − z d , G ( u − u ˉ ) ⟩ H = σ Q ⟨ S u ˉ − ( y Q − y ^ ) , S ( u − u ˉ ) ⟩ L 2 ( 0 , T ; H ) + σ Ω ⟨ S u ˉ ( T ) − ( y Ω − y ^ ( T ) ) , S ( u − u ˉ ) ( T ) ⟩ H = ( σ Q ⟨ S u ˉ , S ( u − u ˉ ) ⟩ L 2 ( 0 , T ; H ) + σ Ω ⟨ S u ˉ ( T ) , S ( u − u ˉ ) ( T ) ⟩ H ) − ( σ Q ⟨ y Q − y ^ , S ( u − u ˉ ) ⟩ L 2 ( 0 , T ; H ) + σ Ω ⟨ y Ω − y ^ ( T ) , S ( u − u ˉ ) ( T ) ⟩ H ) \newcommand{\lmrm}[1]{\langle #1 \rangle} \newcommand{\bu}{\bar{u}} \begin{aligned} &\lmrm{G\bu-z_d,G(u-\bu)}_{\mathcal{H}}\\ =&\sigma_Q\lmrm{S\bu-(y_Q-\hat{y}),S(u-\bu)}_{L^2(0,T;H)}\\ &+\sigma_{\Omega}\lmrm{S\bu(T)-(y_{\Omega}-\hat{y}(T)),S(u-\bu)(T)}_H\\ =&\color{red}{(\sigma_Q\lmrm{S\bu,S(u-\bu)}_{L^2(0,T;H)}+\sigma_{\Omega}\lmrm{S\bu(T),S(u-\bu)(T)}_H)}\\ &-\color{blue}{(\sigma_Q\lmrm{y_Q-\hat{y},S(u-\bu)}_{L^2(0,T;H)}+\sigma_{\Omega}\lmrm{y_{\Omega}-\hat{y}(T),S(u-\bu)(T)}_H)} \end{aligned} ==Guˉzd,G(uuˉ)HσQSuˉ(yQy^),S(uuˉ)L2(0,T;H)+σΩSuˉ(T)(yΩy^(T)),S(uuˉ)(T)H(σQSuˉ,S(uuˉ)L2(0,T;H)+σΩSuˉ(T),S(uuˉ)(T)H)(σQyQy^,S(uuˉ)L2(0,T;H)+σΩyΩy^(T),S(uuˉ)(T)H)
我们先任意选 v v v 代替 u ˉ \bar{u} uˉ, 选 u u u 代替 u − u ˉ u-\bar{u} uuˉ 来分析一下上面这两项. 我们希望, 这两项能化成 ⟨ ⋅ , u − u ˉ ⟩ U \langle\cdot,u-\bar{u}\rangle_U ,uuˉU 的样子, 并且第一个位置用我们可以求出来的表达式来写. 先考虑第一个.
σ Q ⟨ S v , S u ⟩ L 2 ( 0 , T ; H ) + σ Ω ⟨ S v ( T ) , S u ( T ) ⟩ H = ∫ 0 T σ Q ⟨ S v , S u ⟩ H d t + σ Ω ⟨ S v ( T ) , S u ( T ) ⟩ H \newcommand{\lmrm}[1]{\langle #1 \rangle} \begin{aligned} &\color{red}{\sigma_Q\lmrm{Sv,Su}_{L^2(0,T;H)}+\sigma_{\Omega}\lmrm{Sv(T),Su(T)}_H}\\ =&\int_0^T\sigma_Q\lmrm{Sv,Su}_H\text{d}t+\sigma_{\Omega}\lmrm{Sv(T),Su(T)}_H \end{aligned} =σQSv,SuL2(0,T;H)+σΩSv(T),Su(T)H0TσQSv,SuHdt+σΩSv(T),Su(T)H
我们知道, 对给定的 u ∈ U u\in U uU, y = S u y=Su y=Su 是之前的evolution problem 中与 u u u 相关的部分的解, 满足
d d t ⟨ y ( t ) , φ ⟩ H + a ( t ; y ( t ) , φ ) = ⟨ B u ( t ) , φ ⟩ V ′ , V , ∀ φ ∈ V , a . e .   i n ( 0 , T ] ⟨ y ( 0 ) , φ ⟩ H = ⟨ 0 , φ ⟩ H ,   ∀ φ ∈ H \newcommand{\lmrm}[1]{\langle #1 \rangle} \newcommand{\dd}[1]{\frac{\text{d}}{\text{d} #1}} \newcommand{\vphi}{\varphi} \begin{aligned} &\dd{t}\lmrm{y(t),\vphi}_{H}+a(t;y(t),\vphi)=\lmrm{Bu(t),\vphi}_{V',V},\forall \vphi\in V,a.e.\ in(0,T]\\ &\lmrm{y(0),\vphi}_H=\lmrm{0,\vphi}_H,\ \forall \vphi\in H \end{aligned} dtdy(t),φH+a(t;y(t),φ)=Bu(t),φV,V,φV,a.e. in(0,T]y(0),φH=0,φH, φH
现在我们把 v ∈ U v\in U vU 也视为某个 evolution problem 的控制, p = A v ∈ W ( 0 , T ) p=\mathcal{A}v\in W(0,T) p=AvW(0,T) 为对应的解. 这个problem 定义成
d d t ⟨ p ( t ) , φ ⟩ H − a ( t ; p ( t ) , φ ) = σ Q ⟨ S v ( t ) , φ ⟩ H , ∀ φ ∈ V , a . e .   i n [ 0 , T ) ⟨ p ( T ) , φ ⟩ H = σ Ω ⟨ S v ( T ) , φ ⟩ H ,   ∀ φ ∈ H \newcommand{\lmrm}[1]{\langle #1 \rangle} \newcommand{\dd}[1]{\frac{\text{d}}{\text{d} #1}} \newcommand{\vphi}{\varphi} \dd{t}\lmrm{p(t),\vphi}_{H}-a(t;p(t),\vphi)=\sigma_Q\lmrm{Sv(t),\vphi}_{H},\forall \vphi\in V,a.e.\ in[0,T)\\ \lmrm{p(T),\vphi}_H=\sigma_{\Omega}\lmrm{Sv(T),\vphi}_H,\ \forall \vphi\in H dtdp(t),φHa(t;p(t),φ)=σQSv(t),φH,φV,a.e. in[0,T)p(T),φH=σΩSv(T),φH, φH
那么, 把 φ \varphi φ 取为 y = S u y=Su y=Su, 用 p p p 来转化一下,
σ Q ⟨ S v , S u ⟩ L 2 ( 0 , T ; H ) + σ Ω ⟨ S v ( T ) , S u ( T ) ⟩ H = ∫ 0 T σ Q ⟨ S v , y ⟩ H d t + σ Ω ⟨ S v ( T ) , y ( T ) ⟩ H = ∫ 0 T d d t ( ⟨ p ( t ) , y ⟩ H − a ( t ; p ( t ) , y ) ) d t + ⟨ p ( T ) , y ( T ) ⟩ H = − ∫ 0 T ⟨ y t ( t ) , p ( t ) ⟩ V ′ , V + a ( t ; y ( t ) , p ( t ) ) d t   ( 分 部 积 分 ; y ( 0 ) = 0 ) = − ∫ 0 T ⟨ B u ( t ) , A v ( t ) ⟩ V ′ , V d t   ( 再 用 对 偶 算 子 ) = − ∫ 0 T ⟨ B ′ A v , u ⟩ R N u d t   ( 对 固 定 的 t , 是 R N u ) = − ⟨ B ′ A v , u ⟩ U \newcommand{\lmrm}[1]{\langle #1 \rangle} \newcommand{\somega}{\sigma_{\Omega}} \newcommand{\dd}[1]{\frac{\text{d}}{\text{d} #1}} \begin{aligned} &\sigma_Q\lmrm{Sv,Su}_{L^2(0,T;H)}+\sigma_{\Omega}\lmrm{Sv(T),Su(T)}_H\\ =&\int_0^T\sigma_Q\lmrm{Sv,y}_H\text{d}t+\somega\lmrm{Sv(T),y(T)}_H\\ =&\int_0^T\dd{t}(\lmrm{p(t),y}_H-a(t;p(t),y))\text{d}t+\lmrm{p(T),y(T)}_H\\ =&-\int_0^T\lmrm{y_t(t),p(t)}_{V',V}+a(t;y(t),p(t))\text{d}t\ (分部积分;y(0)=0)\\ =&-\int_0^T\lmrm{Bu(t),\mathcal{A}v(t)}_{V',V}\text{d}t\ (再用对偶算子)\\ =&-\int_0^T\lmrm{B'\mathcal{A}v,u}_{\R^{N_u}}\text{d}t\ (对固定的t,是\R^{N_u})\\ =&-\lmrm{B'\mathcal{A}v,u}_U \end{aligned} ======σQSv,SuL2(0,T;H)+σΩSv(T),Su(T)H0TσQSv,yHdt+σΩSv(T),y(T)H0Tdtd(p(t),yHa(t;p(t),y))dt+p(T),y(T)H0Tyt(t),p(t)V,V+a(t;y(t),p(t))dt (;y(0)=0)0TBu(t),Av(t)V,Vdt ()0TBAv,uRNudt (t,RNu)BAv,uU
此时要问, 这个 A \mathcal{A} A 不也是个解映射, 也不好求吗? 不急, 回看第二项:
σ Q ⟨ y Q − y ^ , S u ⟩ L 2 ( 0 , T ; H ) + σ Ω ⟨ y Ω − y ^ ( T ) , S u ( T ) ⟩ H \newcommand{\lmrm}[1]{\langle #1 \rangle} \color{blue}{\sigma_Q\lmrm{y_Q-\hat{y},Su}_{L^2(0,T;H)}+\sigma_{\Omega}\lmrm{y_{\Omega}-\hat{y}(T),Su(T)}_H} σQyQy^,SuL2(0,T;H)+σΩyΩy^(T),Su(T)H
和之前一样的推导, 如果我们能找到一个 p ^ ∈ W ( 0 , T ) \hat{p}\in W(0,T) p^W(0,T), 是如下的evolution problem 的解:
− d d t ⟨ p ( t ) , φ ⟩ H + a ( t ; p ( t ) , φ ) = σ Q ⟨ y Q ( t ) − y ^ ( t ) , φ ⟩ H , ∀ φ ∈ V   a . e .   i n [ 0 , T ) p ( T ) = σ Ω ( y Ω − y ^ ( T ) ) -\frac{\text{d}}{\text{d}t}\langle p(t),\varphi\rangle_H+a(t;p(t),\varphi)=\sigma_Q\langle y_Q(t)-\hat{y}(t),\varphi\rangle_H,\forall\varphi\in V\ a.e.\ in[0,T)\\ p(T)=\sigma_{\Omega}(y_{\Omega}-\hat{y}(T)) dtdp(t),φH+a(t;p(t),φ)=σQyQ(t)y^(t),φH,φV a.e. in[0,T)p(T)=σΩ(yΩy^(T))
就可以用一样分部积分, 把第二项变成 ⟨ B ′ p ^ , u ⟩ U \langle B'\hat{p},u\rangle_U Bp^,uU. 这样, 把 v v v 换回 u ˉ \bar{u} uˉ, u u u 换回 u − u ˉ u-\bar{u} uuˉ第一项和第二项合在一起就变成
− ⟨ B ′ ( p ^ + A u ˉ ) , u − u ˉ ⟩ U -\langle B'(\hat{p}+\mathcal{A}\bar{u}),u-\bar{u}\rangle_U B(p^+Auˉ),uuˉU
这个时候我们用叠加原理, 并记 y ˉ \bar{y} yˉ u ˉ \bar{u} uˉ 对应的 evolution problem 的解, 则 p ˉ : = p ^ + A u ˉ \bar{p}:=\hat{p}+\mathcal{A}\bar{u} pˉ:=p^+Auˉ 就是如下evolution problem的解:
− ⟨ p ( t ) , φ ⟩ V ′ , V + a ( t ; p ( t ) , φ ) = σ Q ⟨ y Q ( t ) − y ˉ ( t ) , φ ⟩ H ,   ∀ φ ∈ V   a . e .   i n [ 0 , T ) p ( T ) = σ Ω ( y Ω − y ˉ ( T ) ) -\langle p(t),\varphi\rangle_{V',V}+a(t;p(t),\varphi)=\sigma_Q\langle y_Q(t)-\bar{y}(t),\varphi\rangle_H,\ \forall \varphi\in V\ a.e.\ in[0,T)\\ p(T)=\sigma_{\Omega}(y_{\Omega}-\bar{y}(T)) p(t),φV,V+a(t;p(t),φ)=σQyQ(t)yˉ(t),φH, φV a.e. in[0,T)p(T)=σΩ(yΩyˉ(T))
总结上述的分析, 我们把一阶最优性条件转变成了
⟨ σ u ˉ − B ′ p ˉ , u − u ˉ ⟩ U ≥ 0 ,   ∀ u ∈ U a d \langle \sigma\bar{u}-B'\bar{p},u-\bar{u}\rangle_U\geq 0,\ \forall u\in U_{ad} σuˉBpˉ,uuˉU0, uUad
也就是说, 我们把求一个控制到解的映射 S S S 的任务, 转变成了在目标值 u ˉ \bar{u} uˉ 未知的情况下, 求两次evolution problem (一次以 u ˉ \bar{u} uˉ 为控制求 y ˉ \bar{y} yˉ, 一次把 y ˉ \bar{y} yˉ 代入求 p ˉ \bar{p} pˉ ). 这时候要问了, 目标值 u ˉ \bar{u} uˉ 还不知道呢, 怎么求? 这就要用我们的迭代方法了. 论文中采用的是 primal-dual active set strategy.

应用POD方法

我们刚刚已经得到一阶最优性条件的表达形式, 也知道它要求解两次evolution problem, 这里的求解我们就可以用上POD方法了. 使用方法就和应用在 evolution problem上是一致的, 推导一下即可.

上一节说了, 我们这个最优条件需要解两个evolution problem: 用 u u u 作输入控制解 y = y ^ + S u y=\hat{y}+Su y=y^+Su, 用 y y y 作输入控制去解 p p p. 在这两个过程里我们只用一次POD方法来求POD基, 并且假定 p l p^l pl 也使用和 y l y^l yl 相同的POD基
p l ( t ) = p ^ ( t ) + ∑ i = 1 l p i l ( t ) ψ i ∈ V p^l(t)=\hat{p}(t)+\sum_{i=1}^lp_i^l(t)\psi_i\in V pl(t)=p^(t)+i=1lpil(t)ψiV
p l ( T ) = σ Ω ( y Ω − y l ( T ) ) p^l(T)=\sigma_{\Omega}(y_{\Omega}-y^l(T)) pl(T)=σΩ(yΩyl(T)), 我们又知道 p ^ ( T ) = σ Ω ( y Ω − y ^ ( T ) ) \hat{p}(T)=\sigma_{\Omega}(y_{\Omega}-\hat{y}(T)) p^(T)=σΩ(yΩy^(T)), y l ( T ) = y ^ ( T ) + ∑ i = 1 l y i l ( t ) ψ i y^l(T)=\hat{y}(T)+\sum_{i=1}^ly_i^l(t)\psi_i yl(T)=y^(T)+i=1lyil(t)ψi, 所以 p i l ( T ) = − σ Ω y i l ( T ) p_i^l(T)=-\sigma_{\Omega}y_i^l(T) pil(T)=σΩyil(T). 总结一下, p l p^l pl 即为如下方程的解:
− ⟨ p ( t ) , φ ⟩ V ′ , V + a ( t ; p ( t ) , φ ) = σ Q ⟨ y Q ( t ) − y l ( t ) , φ ⟩ H ,   ∀ φ ∈ V   a . e .   i n [ 0 , T ) p i l ( T ) = − σ Ω y i l ( T ) ,   i = 1 , ⋯   , l . -\langle p(t),\varphi\rangle_{V',V}+a(t;p(t),\varphi)=\sigma_Q\langle y_Q(t)-y^l(t),\varphi\rangle_H,\ \forall \varphi\in V\ a.e.\ in[0,T)\\ p_i^l(T)=-\sigma_{\Omega}y_i^l(T),\ i=1,\cdots,l. p(t),φV,V+a(t;p(t),φ)=σQyQ(t)yl(t),φH, φV a.e. in[0,T)pil(T)=σΩyil(T), i=1,,l.
类似我们在evolution problem的POD方法中做的事情, 把 p l p^l pl 拆分成 p ^ \hat{p} p^ A l u \mathcal{A}^lu Alu, 其中 A l u \mathcal{A}^lu Alu 就是如下方程的解:
− ⟨ w ( t ) , φ ⟩ V ′ , V + a ( t ; w ( t ) , φ ) = − σ Q ⟨ S l u ( t ) , φ ⟩ H ,   ∀ φ ∈ V   a . e .   i n [ 0 , T ) w ( T ) = − σ Ω S l u ( T ) . -\langle w(t),\varphi\rangle_{V',V}+a(t;w(t),\varphi)=-\sigma_Q\langle S^lu(t),\varphi\rangle_H,\ \forall \varphi\in V\ a.e.\ in[0,T)\\ w(T)=-\sigma_{\Omega}S^lu(T). w(t),φV,V+a(t;w(t),φ)=σQSlu(t),φH, φV a.e. in[0,T)w(T)=σΩSlu(T).
看到现在, 我觉得, 好像这个特解 y ^ \hat{y} y^, p ^ \hat{p} p^ 都是要自己想办法求的.

下面给出 p l p^l pl 和由此算出来的 u ˉ l \bar{u}^l uˉl 的误差估计.

Thm 1.47 A u ∈ H 1 ( 0 , T ; V ) \ { 0 } \mathcal{A}u\in H^1(0,T;V)\backslash\{0\} AuH1(0,T;V)\{0}.\

  1. ℘ \wp = 4, y 1 = S u , y 2 = ( S u ) t , y 3 = A u , y 4 = ( A u ) t y^1=Su,y^2=(Su)_t,y^3=\mathcal{A}u,y^4=(\mathcal{A}u)_t y1=Su,y2=(Su)t,y3=Au,y4=(Au)t, 则 p l p^l pl p p p 的误差估计为
    ∥ p 1 − p ∥ H 1 ( 0 , T ; V ) 2 ≤ C { ∑ i = l + 1 d V λ i V ,   X = V ∑ i = l + 1 d H λ i H ∥ ψ i H − P H l ψ i H ∥ V 2 , X = H \newcommand{\norm}[1]{\|#1\|}\norm{p^1-p}_{H^1(0,T;V)}^2\leq C\left\{\begin{aligned} &\sum_{i=l+1}^{d_V}\lambda_i^V,\ X=V\\ &\sum_{i=l+1}^{d_H}\lambda_i^H\norm{\psi_i^H-P_H^l\psi_i^H}_V^2,X=H \end{aligned}\right. p1pH1(0,T;V)2Ci=l+1dVλiV, X=Vi=l+1dHλiHψiHPHlψiHV2,X=H
    其中 C = C ( T , γ , γ 1 , γ 2 , σ Q , σ Ω ) C=C(T,\gamma,\gamma_1,\gamma_2,\sigma_Q,\sigma_{\Omega}) C=C(T,γ,γ1,γ2,σQ,σΩ) 为常数.

  2. 如果对任意的 u ~ ∈ U \tilde{u}\in U u~U, 都有 S u ~ , A u ~ ∈ H 1 ( 0 , T ; V ) S\tilde{u}, \mathcal{A}\tilde{u}\in H^1(0,T;V) Su~,Au~H1(0,T;V), 并且对所有的 i ∈ J i \in \mathcal{J} iJ, λ i H > 0 \lambda_i^H>0 λiH>0, 那么我们有
    lim ⁡ l → ∞ ∥ A − A l ∥ L ( U , W ( 0 , T ) ) = 0. \lim_{l\to\infty}\|\mathcal{A}-\mathcal{A}^l\|_{\mathcal{L}(U,W(0,T))}=0. llimAAlL(U,W(0,T))=0.
    近似解 u ˉ l \bar{u}^l uˉl 是一阶最优性变分不等式
    ⟨ σ u ˉ l − B ′ p ˉ l , u − u ˉ l ⟩ U ≥ 0 ,   ∀ u ∈ U a d \langle\sigma\bar{u}^l-B'\bar{p}^l,u-\bar{u}^l\rangle_U\geq 0,\ \forall u\in U_{ad} σuˉlBpˉl,uuˉlU0, uUad
    的解, 其中 p ˉ l = p ^ l + A l u ˉ l \bar{p}^l=\hat{p}^l+\mathcal{A}^l\bar{u}^l pˉl=p^l+Aluˉl. (这个是啥? )

Thm 1.49 ( u ˉ l \bar{u}^l uˉl的误差估计) 和之前的Thm 1.47 同样的假定.

  1. ℘ \wp = 4, y 1 = S u , y 2 = ( S u ) t , y 3 = A u , y 4 = ( A u ) t y^1=Su,y^2=(Su)_t,y^3=\mathcal{A}u,y^4=(\mathcal{A}u)_t y1=Su,y2=(Su)t,y3=Au,y4=(Au)t, 则 u ˉ l \bar{u}^l uˉl u ˉ \bar{u} uˉ 的误差估计为
    ∥ u ˉ 1 − u ˉ ∥ U ≤ C σ { ∑ i = l + 1 d V λ i V ,   X = V ∑ i = l + 1 d H λ i H ∥ ψ i H − P H l ψ i H ∥ V 2 , X = H \newcommand{\norm}[1]{\|#1\|} \norm{\bar{u}^1-\bar{u}}_{U}\leq \frac{C}{\sigma}\left\{\begin{aligned} &\sum_{i=l+1}^{d_V}\lambda_i^V,\ X=V\\ &\sum_{i=l+1}^{d_H}\lambda_i^H\norm{\psi_i^H-P_H^l\psi_i^H}_V^2,X=H \end{aligned}\right. uˉ1uˉUσCi=l+1dVλiV, X=Vi=l+1dHλiHψiHPHlψiHV2,X=H
    其中 C = C ( T , γ , γ 1 , γ 2 , σ Q , σ Ω , ∥ B ′ ∥ L ( L 2 ( 0 , T ; V ) , U ) ) C=C(T,\gamma,\gamma_1,\gamma_2,\sigma_Q,\sigma_{\Omega},\|B'\|_{\mathcal{L}(L^2(0,T;V),U)}) C=C(T,γ,γ1,γ2,σQ,σΩ,BL(L2(0,T;V),U)) 为常数.

lim ⁡ l → ∞ ∥ u ˉ l − u ˉ ∥ U = 0 \lim_{l\to\infty}\|\bar{u}^l-\bar{u}\|_U=0 llimuˉluˉU=0

上面这个定理实际上是用
∥ u ˉ − u ˉ l ∥ U ≤ 1 σ ∥ B ′ ( A l − A ) u ˉ ∥ U \|\bar{u}-\bar{u}^l\|_U\leq \frac{1}{\sigma}\|B'(\mathcal{A}^l-\mathcal{A})\bar{u}\|_U uˉuˉlUσ1B(AlA)uˉU
来得到的. 然后文章给了一个用POD的算法. POD discretized primal-dual active set strategy.

后验误差估计

我们希望找出一种误差估计, 它的估计限与 u ˉ \bar{u} uˉ 无关. 我们的近似解 u ˉ l ≠ u ˉ \bar{u}^l\not=\bar{u} uˉl=uˉ, 也就不满足最优解对应的变分不等式. 但是添加一个扰动 ξ l ∈ U \xi^l\in U ξlU, 我们可以得到下面的不等式形式:
⟨ σ u ˉ l − B ′ p ~ l + ξ l , u − u ˉ l ⟩ U ≥ 0 ,   ∀ u ∈ U a d \langle \sigma\bar{u}^l-B'\tilde{p}^l+\xi^l,u-\bar{u}^l\rangle_U\geq 0,\ \forall u\in U_{ad} σuˉlBp~l+ξl,uuˉlU0, uUad
其中的 p ~ l = p ^ + A u ˉ l \tilde{p}^l=\hat{p}+\mathcal{A}\bar{u}^l p~l=p^+Auˉl. 所以, u ˉ l \bar{u}^l uˉl 可以视为
min ⁡ u ∈ U a d J ~ ( u ) = J ( y ^ + S u , u ) + ⟨ ξ l , u ⟩ U \min_{u\in U_{ad}}\tilde{J}(u)=J(\hat{y}+Su,u)+\langle \xi^l,u\rangle_U uUadminJ~(u)=J(y^+Su,u)+ξl,uU
的解. 只要 ξ l \xi^l ξl 足够小, 它就足够靠近精确解.

Thm 1.50 还是取 ℘ = 4 \wp=4 =4, snapshots 和之前一样, 定义 ξ l ∈ U \xi^l\in U ξlU,
ξ i l ( t ) = { − min ⁡ ( 0 , η i l ( t ) ) , a . e .   t ∈ A a i l = { t ∈ [ 0 , T ] ∣ u ˉ i l ( t ) = u a i ( t ) } − max ⁡ ( 0 , η i l ( t ) ) , a . e .   t ∈ A b i l = { t ∈ [ 0 , T ] ∣ u ˉ b i l ( t ) = u b i ( t ) } − η i l ( t ) , a . e .   t ∈ [ 0 , T ] \ ( A a i l ∪ A b i l ) . \xi_i^l(t)=\left\{\begin{aligned} &-\min(0,\eta_i^l(t)), &a.e.\ t\in \mathcal{A}_{ai}^l=\{t\in[0,T]|\bar{u}_i^l(t)=u_{ai}(t)\}\\ &-\max(0,\eta_i^l(t)), &a.e.\ t\in \mathcal{A}_{bi}^l=\{t\in[0,T]|\bar{u}_{bi}^l(t)=u_{bi}(t)\}\\ &-\eta_i^l(t), &a.e.\ t\in[0,T]\backslash(\mathcal{A}_{ai}^l\cup\mathcal{A}_{bi}^l). \end{aligned}\right. ξil(t)=min(0,ηil(t)),max(0,ηil(t)),ηil(t),a.e. tAail={t[0,T]uˉil(t)=uai(t)}a.e. tAbil={t[0,T]uˉbil(t)=ubi(t)}a.e. t[0,T]\(AailAbil).
其中, η l = σ u ˉ l − B ′ ( p ^ + A u ˉ l ) ∈ U \eta^l=\sigma\bar{u}^l-B'(\hat{p}+\mathcal{A}\bar{u}^l)\in U ηl=σuˉlB(p^+Auˉl)U. 则有后验误差估计
∥ u ˉ − u ˉ l ∥ U ≤ 1 σ ∥ ξ l ∥ U \|\bar{u}-\bar{u}^l\|_U\leq\frac{1}{\sigma}\|\xi^l\|_U uˉuˉlUσ1ξlU
特别地, lim ⁡ l → ∞ ∥ ξ l ∥ U = 0 \lim\limits_{l\to\infty}\|\xi^l\|_U=0 llimξlU=0.

参考文献


  1. Gubisch M, Volkwein S. Proper orthogonal decomposition for linear-quadratic optimal control[J]. Model reduction and approximation: theory and algorithms, 2017, 15(1). ↩︎

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值