归并操作(merge),指的是将两个已经排序的序列合并成一个序列的操作。
可以通过排序顺序计算逆序对。当然也可以进行归并操作。
两个相邻序列(left,right),各自是有序的,所以只需要计算right序列中元素和left序列中的元素的逆序个数,通过递归后的回溯,每层相加就可以知道一共需要相邻元素交换的总次数。
注意:每层依然需要进行排序。
如题:toj-1455
Time Limit: 2.0 Seconds Memory Limit: 65536K
Total Runs: 3221 Accepted Runs: 900
9 1 0 5 4 ,Ultra-QuickSort produces the output
0 1 4 5 9 .Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Output for Sample Input
6 0
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
long long sum;//由于数量很大,用long long
int a[505000];
void merge_sort(int s, int e) {
if(s < e) {
int mid = (s + e) / 2;
merge_sort(s, mid);
merge_sort(mid + 1, e);
int start_left = s;
int start_right = mid + 1;
//前提是每段是有序的,只需要计算出相邻两段之间的逆序对数即可
while(start_left <= mid && start_right <= e) {
if(a[start_left] <= a[start_right] ) {
start_left++;
} else {
sum += mid - start_left + 1;//求最大交换长度
start_right++;
}
}
sort(a + s, a + e + 1);//[a+s, a+e+1);
}
return;
}
int main() {
int n;
int i;
while(cin>>n, n) {
//memset(a, 0, sizeof(a));
sum = 0;
for(i = 0; i < n; i++) {
cin>>a[i];
}
merge_sort(0, n - 1);
printf("%lld\n",sum);
}
return 0;
}