Python中GIL

一、GIL的概念:

python全局解释器锁。(global interrupter lock)

二、GIL产生的原因:

1、Guido van Rossum(吉多·范罗苏姆)创建python时就只考虑到单核cpu。

2、解决多线程之间数据完整性和状态同步的最简单方法自然就是加锁。 于是有了GIL这把超级大锁。

3、cpython解析只允许拥有GIL全局解析器锁才能运行程序。

4、保证同一个时刻只允许一个线程可以使用cpu。

5、以前写cpython解析器的时候就考虑一个cpu情况。

6、由于大量的程序开发者接收了这套机制,现在代码量越来越多,已经不容易通过c代码去解决这个问题。

三、GIL的作用:

保证同一时刻只能一个线程使用cpu。

四、解决方案:

1、更换cpython为jpython(不建议)。

2、使用多进程完成多线程的任务。

3、在使用多线程可以使用c语言去实现。

Python中,GIL(全局解释器锁)是一种机制,它确保在任何给定时间只有一个线程在解释器中执行字节码。这意味着在多线程的情况下,Python的多线程并不能真正实现并行执行,而只是并发执行。 GIL的存在是为了保护Python解释器内部数据结构的一致性,因为这些数据结构在多线程环境下可能会出现竞争条件。然而,这也导致了Python在处理计算密集型任务时的性能问题,因为只有一个线程可以执行字节码。 虽然GIL对于IO密集型任务并不是一个问题,因为线程在等待IO操作完成时会释放GIL,但对于计算密集型任务,GIL会成为性能瓶颈。 要解决GIL的限制,有几种方法可以尝试: 1. 使用多进程而不是多线程:Python的multiprocessing模块提供了一种在多个进程中执行任务的方式,每个进程都有自己的解释器和GIL。这样可以实现真正的并行执行。你可以使用multiprocessing模块来将计算密集型任务分配给多个进程执行。 2. 使用其他解释器:除了CPython,还有其他的Python解释器,如Jython、IronPython和PyPy。这些解释器没有GIL的限制,因此可以实现真正的并行执行。但需要注意的是,这些解释器可能不支持所有的Python库和功能。 3. 使用C扩展:对于计算密集型任务,可以使用C扩展来绕过GIL。通过将计算部分的代码编写为C扩展,可以在不受GIL限制的情况下执行计算。 下面是一个使用多进程的示例代码,演示了如何绕过GIL实现并行执行: ```python from multiprocessing import Pool def calculate_square(n): return n * n if __name__ == '__main__': numbers = [1, 2, 3, 4, 5] pool = Pool() result = pool.map(calculate_square, numbers) print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值