【PyTorch】1.5 autograd与逻辑回归

本文深入解析PyTorch的自动求导机制,包括torch.autograd.backward和torch.autograd.grad的使用技巧,如保留计算图、梯度权重设定及高阶导数计算。同时,通过逻辑回归模型的训练,详细介绍机器学习模型训练流程,涵盖数据准备、模型搭建、损失函数定义、优化器选择及模型迭代训练等关键步骤。
摘要由CSDN通过智能技术生成

目录

一、autograd——自动求导系统

1. torch.autograd.backward()

1.1 计算图与梯度求导

1.2 retain_graph

1.3 grad_tensors

2. torch.autograd.grad()

​2.1 梯度不自动清零 

2.2 依赖于叶子结点的结点,requires_grad默认位True

2.3 叶子结点不可执行in-place(原地操作)

二、逻辑回归

1. 逻辑回归介绍

2. 对数几率回归

3. 机器学习模型训练步骤


任务简介

学习pytorch的自动求导系统——autograd;通过autograd训练逻辑回归模型

详细说明

本节对pytorch的自动求导系统中常用的两个方法torch.autograd.backward和torch.autograd.grad进行介绍,并演示一阶导数,二阶导数的求导过程;理解了自动求导系统,以及数据载体——张量,前向传播构建计算图,计算图求取梯度过程,这些知识之后,就可以开始正式训练机器学习模型。这里通过演示逻辑回归模型的训练,学习机器学习回归模型的五大模块:数据、模型、损失函数、优化器和迭代训练过程。这五大模块将是后面学习的主线。


一、autograd——自动求导系统

1. torch.autograd.backward()

1.1 计算图与梯度求导

1.2 retain_graph

retain_graph = true ,能把计算图保存下来,才能进行第二次反向传播(梯度会累加)。 

测试代码:

# ====================================== retain_graph ==============================================
flag = True
#flag = False
if flag:
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    y.backward(retain_graph=True) # retain_graph = true ,能把计算图保存下来,才能进行第二次反向传播(梯度会累加)。
    print(w.grad)
    y.backward()
    print(w.grad)

 输出:

tensor([5.])
tensor([10.])

pycharm调试,进入函数:

 pycharm调试,单步执行:

1.3 grad_tensors

grad_tensors是可以设置多个梯度的权重。
测试代码:

# ====================================== grad_tensors ==============================================
flag = True
# flag = False
if flag:
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)     # retain_grad()
    b = torch.add(w, 1)

    y0 = torch.mul(a, b)    # y0 = (x+w) * (w+1)
    y1 = torch.add(a, b)    # y1 = (x+w) + (w+1)    dy1/dw = 2

    loss = torch.cat([y0, y1], dim=0)       # [y0, y1]
    grad_tensors = torch.tensor([1., 2.])

    loss.backward(gradient=grad_tensors)    # gradient 传入 torch.autograd.backward()中的grad_tensors

    print(w.grad)

w.grag相当于(dy0/dw)*1+(dy1/dw)*2=9

输出:

tensor([9.]) #5*1 + 2*2

2. torch.autograd.grad()

测试代码:

只有创建了导数的计算图,才能用于高阶求导

# ====================================== autograd.gard ==============================================
flag = True
# flag = False
if flag:

    x = torch.tensor([3.], requires_grad=True)
    y = torch.pow(x, 2)     # y = x**2

    grad_1 = torch.autograd.grad(y, x, create_graph=True)   # grad_1 = dy/dx = 2x = 2 * 3 = 6
    print(grad_1)

    grad_2 = torch.autograd.grad(grad_1[0], x)              # grad_2 = d(dy/dx)/dx = d(2x)/dx = 2
    print(grad_2)

输出:

(tensor([6.], grad_fn=<MulBackward0>),)
(tensor([2.]),)

2.1 梯度不自动清零 

如果梯度不清零,梯度会进行累加。要清零需要加上:w.grad.zero_()

测试代码:

# ====================================== tips: 1 ==============================================
flag = True
# flag = False
if flag:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    for i in range(4):
        a = torch.add(w, x)
        b = torch.add(w, 1)
        y = torch.mul(a, b)

        y.backward()
        print(w.grad)
        w.grad.zero_()

输出:

tensor([5.])
tensor([5.])
tensor([5.])
tensor([5.])

2.2 依赖于叶子结点的结点,requires_grad默认位True

对于“依赖于叶子结点的结点,requires_grad默认位True”,关于这个的理解参考上述的“计算图”,比如:x的梯度是依赖于a的梯度,a的梯度又依赖于y的梯度。

测试代码:

# ====================================== tips: 2 ==============================================
flag = True
# flag = False
if flag:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    print(a.requires_grad, b.requires_grad, y.requires_grad)

输出:

True True True

2.3 叶子结点不可执行in-place(原地操作)

测试代码:

flag = True
# flag = False
if flag:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    w.add_(1)

    y.backward()

.add_()和.add()都能把两个张量加起来,但.add_是in-place操作,比如x.add_(y),x+y的结果会存储到原来的x中。Torch里面所有带"_"的操作,都是in-place的。

执行上述代码,报错: a leaf Variable that requires grad has been used in an in-place operation.
下面理解in-place操作。

代码:

# ====================================== tips: 3 ==============================================
flag = True
# flag = False
if flag:

    a = torch.ones((1, ))
    print(id(a), a)

    a = a + torch.ones((1, ))
    print(id(a), a)

    # a += torch.ones((1, ))
    # print(id(a), a)

输出:

2175013002280 tensor([1.])
2175013003080 tensor([2.])

结果显示,a的内存地址发生了变化。这是因为运算:a = a + torch.ones((1, ))开辟了新的内存地址,也就是说这不是in-place操作。如果使用a += torch.ones((1, )),则输出:

2175012960120 tensor([1.])
2175012960120 tensor([2.])

内存地址没有发生变化,这就是in-place操作。
为什么叶子结点不能不能使用in-place操作?
参考上述计算图,以变量w为例。前向传播的时候,会记录w的地址,地址中会保存w的数据。反向传播的时候,会根据w的地址,读取w的数据,进行计算梯度。如果在反向传播之前,进行in-place操作,新的数据会覆盖原来的数据,会造成计算梯度错误。

二、逻辑回归

1. 逻辑回归介绍

2. 对数几率回归

用wx+b来拟合对数几率ln\frac{y}{1-y} 即为对数几率回归,逻辑回归是对数几率回归。

3. 机器学习模型训练步骤

测试代码: 

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)


# ============================ step 1/5 生成数据 ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# ============================ step 2/5 选择模型 ============================
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x


lr_net = LR()   # 实例化逻辑回归模型


# ============================ step 3/5 选择损失函数 ============================
loss_fn = nn.BCELoss()

# ============================ step 4/5 选择优化器   ============================
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

# ============================ step 5/5 模型训练 ============================
for iteration in range(1000):

    # 前向传播
    y_pred = lr_net(train_x)

    # 计算 loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()

    # 绘图
    if iteration % 20 == 0:

        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
        correct = (mask == train_y).sum()  # 计算正确预测的样本个数
        acc = correct.item() / train_y.size(0)  # 计算分类准确率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break

输出:

 

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值