目录
2.2 依赖于叶子结点的结点,requires_grad默认位True
任务简介:
学习pytorch的自动求导系统——autograd;通过autograd训练逻辑回归模型
详细说明:
本节对pytorch的自动求导系统中常用的两个方法torch.autograd.backward和torch.autograd.grad进行介绍,并演示一阶导数,二阶导数的求导过程;理解了自动求导系统,以及数据载体——张量,前向传播构建计算图,计算图求取梯度过程,这些知识之后,就可以开始正式训练机器学习模型。这里通过演示逻辑回归模型的训练,学习机器学习回归模型的五大模块:数据、模型、损失函数、优化器和迭代训练过程。这五大模块将是后面学习的主线。
一、autograd——自动求导系统
1. torch.autograd.backward()
1.1 计算图与梯度求导
1.2 retain_graph
retain_graph = true ,能把计算图保存下来,才能进行第二次反向传播(梯度会累加)。
测试代码:
# ====================================== retain_graph ==============================================
flag = True
#flag = False
if flag:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
y.backward(retain_graph=True) # retain_graph = true ,能把计算图保存下来,才能进行第二次反向传播(梯度会累加)。
print(w.grad)
y.backward()
print(w.grad)
输出:
tensor([5.])
tensor([10.])
pycharm调试,进入函数:
pycharm调试,单步执行:
1.3 grad_tensors
grad_tensors是可以设置多个梯度的权重。
测试代码:
# ====================================== grad_tensors ==============================================
flag = True
# flag = False
if flag:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x) # retain_grad()
b = torch.add(w, 1)
y0 = torch.mul(a, b) # y0 = (x+w) * (w+1)
y1 = torch.add(a, b) # y1 = (x+w) + (w+1) dy1/dw = 2
loss = torch.cat([y0, y1], dim=0) # [y0, y1]
grad_tensors = torch.tensor([1., 2.])
loss.backward(gradient=grad_tensors) # gradient 传入 torch.autograd.backward()中的grad_tensors
print(w.grad)
w.grag相当于(dy0/dw)*1+(dy1/dw)*2=9
输出:
tensor([9.]) #5*1 + 2*2
2. torch.autograd.grad()
测试代码:
只有创建了导数的计算图,才能用于高阶求导
# ====================================== autograd.gard ==============================================
flag = True
# flag = False
if flag:
x = torch.tensor([3.], requires_grad=True)
y = torch.pow(x, 2) # y = x**2
grad_1 = torch.autograd.grad(y, x, create_graph=True) # grad_1 = dy/dx = 2x = 2 * 3 = 6
print(grad_1)
grad_2 = torch.autograd.grad(grad_1[0], x) # grad_2 = d(dy/dx)/dx = d(2x)/dx = 2
print(grad_2)
输出:
(tensor([6.], grad_fn=<MulBackward0>),)
(tensor([2.]),)
2.1 梯度不自动清零
如果梯度不清零,梯度会进行累加。要清零需要加上:w.grad.zero_()。
测试代码:
# ====================================== tips: 1 ==============================================
flag = True
# flag = False
if flag:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
for i in range(4):
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
y.backward()
print(w.grad)
w.grad.zero_()
输出:
tensor([5.])
tensor([5.])
tensor([5.])
tensor([5.])
2.2 依赖于叶子结点的结点,requires_grad默认位True
对于“依赖于叶子结点的结点,requires_grad默认位True”,关于这个的理解参考上述的“计算图”,比如:x的梯度是依赖于a的梯度,a的梯度又依赖于y的梯度。
测试代码:
# ====================================== tips: 2 ==============================================
flag = True
# flag = False
if flag:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
print(a.requires_grad, b.requires_grad, y.requires_grad)
输出:
True True True
2.3 叶子结点不可执行in-place(原地操作)
测试代码:
flag = True
# flag = False
if flag:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
w.add_(1)
y.backward()
.add_()和.add()都能把两个张量加起来,但.add_是in-place操作,比如x.add_(y),x+y的结果会存储到原来的x中。Torch里面所有带"_"的操作,都是in-place的。
执行上述代码,报错: a leaf Variable that requires grad has been used in an in-place operation.
下面理解in-place操作。
代码:
# ====================================== tips: 3 ==============================================
flag = True
# flag = False
if flag:
a = torch.ones((1, ))
print(id(a), a)
a = a + torch.ones((1, ))
print(id(a), a)
# a += torch.ones((1, ))
# print(id(a), a)
输出:
2175013002280 tensor([1.])
2175013003080 tensor([2.])
结果显示,a的内存地址发生了变化。这是因为运算:a = a + torch.ones((1, ))开辟了新的内存地址,也就是说这不是in-place操作。如果使用a += torch.ones((1, )),则输出:
2175012960120 tensor([1.])
2175012960120 tensor([2.])
内存地址没有发生变化,这就是in-place操作。
为什么叶子结点不能不能使用in-place操作?
参考上述计算图,以变量w为例。前向传播的时候,会记录w的地址,地址中会保存w的数据。反向传播的时候,会根据w的地址,读取w的数据,进行计算梯度。如果在反向传播之前,进行in-place操作,新的数据会覆盖原来的数据,会造成计算梯度错误。
二、逻辑回归
1. 逻辑回归介绍
2. 对数几率回归
用wx+b来拟合对数几率 即为对数几率回归,逻辑回归是对数几率回归。
3. 机器学习模型训练步骤
测试代码:
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)
# ============================ step 1/5 生成数据 ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums) # 类别0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums) # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)
# ============================ step 2/5 选择模型 ============================
class LR(nn.Module):
def __init__(self):
super(LR, self).__init__()
self.features = nn.Linear(2, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.features(x)
x = self.sigmoid(x)
return x
lr_net = LR() # 实例化逻辑回归模型
# ============================ step 3/5 选择损失函数 ============================
loss_fn = nn.BCELoss()
# ============================ step 4/5 选择优化器 ============================
lr = 0.01 # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)
# ============================ step 5/5 模型训练 ============================
for iteration in range(1000):
# 前向传播
y_pred = lr_net(train_x)
# 计算 loss
loss = loss_fn(y_pred.squeeze(), train_y)
# 反向传播
loss.backward()
# 更新参数
optimizer.step()
# 绘图
if iteration % 20 == 0:
mask = y_pred.ge(0.5).float().squeeze() # 以0.5为阈值进行分类
correct = (mask == train_y).sum() # 计算正确预测的样本个数
acc = correct.item() / train_y.size(0) # 计算分类准确率
plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')
w0, w1 = lr_net.features.weight[0]
w0, w1 = float(w0.item()), float(w1.item())
plot_b = float(lr_net.features.bias[0].item())
plot_x = np.arange(-6, 6, 0.1)
plot_y = (-w0 * plot_x - plot_b) / w1
plt.xlim(-5, 7)
plt.ylim(-7, 7)
plt.plot(plot_x, plot_y)
plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
plt.legend()
plt.show()
plt.pause(0.5)
if acc > 0.99:
break
输出: