TLAE时间潜在自动编码器

TLAE时间潜在自动编码器

出自2021 AAAI文章《Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate TimeSeries Forecasting》,下面是我对这篇文章的理解与总结。

这篇文章针对高维时间序列的预测(我理解应该是输入是多维,输出也是多维,而不是输入多维,输出一维)问题,提出了一种时序潜在自动编码的概率模型。
高维多变量时间序列的概率预测十分具有挑战性,以前的工作要么做出简单的分布假设,要么放弃不同序列之间的相关性建模。一个比较有效的方法是利用可扩展矩阵分解进行潜在空间预测,但这种嵌入是线性的,而且在深度学习预测中无法端到端训练。因此,文章针对这些问题,利用自动编码器代替线性的矩阵分解方法,可以捕捉更复杂的关系,在潜在空间上进行时序建模,潜在空间的预测值通过解码器还原到输入空间。文章还建立了潜在空间的概率模型,对潜在空间的输出,用多元高斯分布建模,损失函数包括原始空间输入输出的重构误差以及负对数似然损失。
在这里插入图片描述

通过这样设计的损失函数,一方面,通过将Y优化为接近Y^, 模型被期望捕获相关交叉时间序列,并将该全局信息编码成潜在变量X,降低了维度。另一方面,最小化X和X^之间的差异允许模型捕获时间相关性,并提供潜在表示的预测能力。
在这里插入图片描述

模型的结构如上图所示,首先对与输入Y维度为n*T,n是不同序列的个数(特征向量维数),T是时间序列的长度,同时T又被分成1—L,L+1—B两部分,前一部分是输入,后一部分是预测值。通过一个G(Encoder),得到输入Y的潜在向量矩阵X,相当于对Y做了矩阵分解,X可以在更低维度的潜在空间上表示Y。之后将x1—xL输入RNN(TCN)中,得到xL+1(预测值),xL+1再输入RNN中,得到xL+2,以此类推,最终得到X,X包括x1—xL,xL+1—xB,前一部分是Y分解得到的,后一部分是预测值。这个X通过F(Decoder)可以得到重构之后的Y。同时对X进行高斯分布建模,计算似然函数。

总结:这篇文章提出的方法是针对高维时间序列,实际应用中高维变量的情况比较少,而且通常是分类问题或者预测一个变量的值,但是,文章提出的方法还是很有启发性的。由于这篇文章是2021年才发表的,网上也没有讲解的博客,第一次看理解起来确实很困难,需要花很长时间认真的去看,我看的时候对于一些数学概念不太清楚,查了之后再看理解就会轻松一些。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值