写在前面
前面写了OTSU算法、最大熵算法、自适应阈值法,这些都是基于阈值的分割算法。
今天写一下基于区域的分割算法,其中最为有名和经典的就是区域生长算法。值得说明的是:OpenCV没有提供区域生长算法的API。
优点:基本思想相对简单,通常能将具有相同特征的联通区域分割出来,并能提供很好的边界信息和分割结果。在没有先验知识可以利用时,可以取得最佳的性能,可以用来分割比较复杂的图象,如自然景物、硬币、医学图像等。
缺点:区域生长法是一种迭代的方法,空间和时间开销都比较大,噪声和灰度不均一可能会导致空洞和过分割,并在对图像中的阴影效果处理上往往不是很好。
原理
区域生长算法的基本思想是将有相似性质的像素点合并到一起。对每一个区域要先指定一个种子点作为生长的起点,然后将种子点周围领域的像素点和种子点进行对比,将具有相似性质的点合并起来继续向外生长,直到没有满足条件的像素被包括进来为止。这样一个区域的生长就完成了。这个过程中有几个关键的问题:
a> 给定种子点(种子点如何选取?)
种子点的选取很多时候都采用人工交互的方法实现,也有用其他方式的,比如寻找物体并提取物体内部点作为种子点。
b> 确定在生长过程中能将相邻像素包括进来的准则
灰度图像的差值;彩色图像的颜色等等。都是关于像素与像素间的关系描述。
c> 生长的停止条件
算法步骤 :
a> 创建一个空白的图像(全黑);
b> 将种子点存入vector中,vector中存储待生长的种子点;
c> 依次弹出种子点并判断种子点如周围8邻域的关系(生长规则),相似的点则作为下次生长的种子点;
d> vector中不存在种子点后就停止生长。

基于OpenCV实现
用了一个交互,采用鼠标选取种子,但是只做了单个种子的,多种子可以在此基础上扩展。
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
/***************************************************************************************
Function: 区域生长算法
Input: src 待处理原图像 pt 初始生长点 th 生长的阈值条件
Output: 肺实质的所在的区域 实质区是白色,其他区域是黑色
Description: 生长结果区域标记为白色(255),背景色为黑色(0)
Return: NULL
Others: NULL
***************************************************************************************/
void RegionGrow(cv::Mat& src, cv::Mat& matDst, cv::Point2i pt, int th)
{
cv::Point2i ptGrowing; //待生长点位置
int nGrowLable = 0; //标记是否生长过
int nSrcValue = 0; //生长起点灰度值
int nCurValue = 0; //当前生长点灰度值
matDst = cv::Mat::zeros(src.size(), CV_8UC1); //创建一个空白区域,填充为黑色
//生长方向顺序数据
int DIR[8][2] = { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 } };
std::vector<cv::Point2i> vcGrowPt; //生长点栈
vcGrowPt.push_back(pt); //将生长点压入栈中
matDst.at<uchar>(pt.y, pt.x) = 255; //标记生长点
nSrcValue = src.at<uchar>(pt.y, pt.x); //记录生长点的灰度值
while (!vcGrowPt.empty()) //生长栈不为空则生长
{
pt = vcGrowPt.back(); //取出一个生长点
vcGrowPt.pop_back();
//分别对八个方向上的点进行生长
for (int i = 0; i<8; ++i)
{
ptGrowing.x = pt.x + DIR[i][0];
ptGrowing.y = pt.y + DIR[i][1];
//检查是否是边缘点
if (ptGrowing.x < 0 || ptGrowing.y < 0 || ptGrowing.x >(src.cols - 1) || (ptGrowing.y > src.rows - 1))
continue;
nGrowLable = matDst.at<uchar>(ptGrowing.y, ptGrowing.x); //当前待生长点的灰度值
if (nGrowLable == 0) //如果标记点还没有被生长
{
nCurValue = src.at<uchar>(ptGrowing.y, ptGrowing.x);
if (abs(nSrcValue - nCurValue) < th) //在阈值范围内则生长
{
matDst.at<uchar>(ptGrowing.y, ptGrowing.x) = 255; //标记为白色
vcGrowPt.push_back(ptGrowing); //将下一个生长点压入栈中
}
}
}
}
}
void on_MouseHandle(int event, int x, int y, int flags, void* param){
cv::Mat& src = *(cv::Mat*) param;
cv::Mat src_gray, dst;
if (src.channels() > 1)
cv::cvtColor(src, src_gray, CV_RGB2GRAY);
cv::Point2i pt;
switch (event)
{
//左键按下
case cv::EVENT_LBUTTONDOWN:
{
//x:列 y:行
pt=cv::Point2i(x, y);
std::cout << "(x,y)=" << "(" << x << "," << y << ")" << std::endl;
}
break;
//左键放开
char str[16];
case cv::EVENT_LBUTTONUP:
{
cv::circle(src, cv::Point2i(x, y),1, cv::Scalar(0, 0, 255), -1,CV_AA);
sprintf_s(str, "(%d,%d)", x, y);
//cv::putText(src, str, cv::Point2i(x, y), 3, 1, cv::Scalar(150, 200,0), 2, 8);
cv::namedWindow("dst", CV_WINDOW_NORMAL);//定义一个dst窗口
pt = cv::Point2i(x, y);
RegionGrow(src_gray,dst,pt,40); //区域生长
cv::bitwise_and(src_gray, dst, dst); //与运算
imshow("src", src);
imshow("dst", dst);
}
break;
}
}
int main(){
cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\Fig0943(a)(dark_blobs_on_light_background).tif");
if (src.empty()){
return -1;
}
cv::namedWindow("src", CV_WINDOW_NORMAL);//定义一个img窗口
cv::setMouseCallback("src", on_MouseHandle, (void*)&src);//调用回调函数
imshow("src", src);
cv::waitKey(0);
}
效果
》鼠标选取种子点:
》区域生长:
》鼠标重新选取种子点:
》区域生长:
一些小结
1、c++ vector用法:https://blog.csdn.net/hancunai0017/article/details/7032383
2、opencv 基本数据结构point :https://docs.opencv.org/2.4/modules/core/doc/basic_structures.html#point
4、变量值转字符串:用sprintf或sprintf_s(str, " ", ) 。
参考: