基于机器学习的蘑菇毒性预测分析及应用实现

1.摘要

        野生蘑菇误食导致的中毒事件屡见不鲜,已成为我国食物中毒死亡案例的首要诱因。鉴于蘑菇种类繁多,形态各异,非专业人士难以仅凭外观、形态或颜色等直观特征准确区分有毒蘑菇与可食用蘑菇,缺乏统一且简便的鉴别标准。为了判断蘑菇的食用安全性,必须深入分析不同特征属性的蘑菇样本是否含有毒性。鉴于众多蘑菇种类均具毒性,近年来,野外及森林中采摘野生蘑菇作为食物引发的中毒事件备受社会关注。因此,迅速且准确地鉴别蘑菇毒性成为采摘活动中的核心安全问题,这一议题在全球范围内均得到了广泛重视。

        本文旨在设计一种基于机器学习的算法,用于蘑菇毒性的预测。研究选用了UCI的Mushroom Data Set蘑菇数据集,并实现了朴素贝叶斯、决策树、逻辑回归等几种常用的机器学习算法,以实现对蘑菇毒性的精准预测。最终,本研究成功构建了一个操作简便、易于应用的蘑菇毒性识别与分类系统,该系统可以选择不同的分类器进行预测实现。(整个项目装逼又简单)

2.数据集描述

        UCI的Mushroom Data Set数据集,总样本数为8124,其中6513个样本做训练,1611个样本做测试。并且,其中可食用有4208样本,占51.8%;有毒的样本为3916,占48.2%。每个样本描述了蘑菇的22个属性,比如形状、气味等等。对蘑菇的22种特征属性进行分析,从而得到蘑菇可使用性模型,更好的预测出蘑菇是否可食用。

        即为:蘑菇数据集包含8124个样本,每个样本有23个特征,其中22个是描述蘑菇属性的字符型特征,1个是目标变量(蘑菇是否可食用)。

数据集链接:UCI 机器学习存储库

3.应用实现

可以选择分类器:

可以选择输出指标: 

点击分类预测按钮:

 

当选择决策树时:

 

其结果如下:

 

 代码链接:

https://download.csdn.net/download/weixin_40651515/89897733?spm=1001.2014.3001.5503

在Python中,我们可以利用概率论中的贝叶斯定理来构建一个简单的贝叶斯分类器,例如使用贝叶斯朴素算法蘑菇毒性进行预测。贝叶斯分类法基于贝叶斯定理,它假设特征之间相互独立,这在实际应用中可能并不是成立,但在许多简单场景下是个不错的选择。 首先,你需要准备一些关于蘑菇数据集,包含蘑菇的各种特征(如外形、颜色、气味等)以及它们对应的毒性和非毒性标签。一种常见的库如`sklearn`中的`GaussianNB`就是朴素贝叶斯分类器的一个实现,可以用于文本数据或数值型特征: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score # 加载蘑菇数据(这里需要你自己提供或从网上下载) mushroom_data = ... # 蘑菇数据格式应类似{'features': [list], 'labels': [0, 1]} X = mushroom_data['features'] y = mushroom_data['labels'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建并训练朴素贝叶斯分类器 gnb = GaussianNB() gnb.fit(X_train, y_train) # 预测测试集 predictions = gnb.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, predictions) print(f"Accuracy: {accuracy}") # 对新样本进行分类 new_mushroom = ... # 新的蘑菇特征列表 classification = gnb.predict([new_mushroom]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习设计与实现

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值