Vosk语音识别包

Vosk介绍

Vosk作为一款开源的离线语音识别工具包,其核心特点可归纳为以下五个方面,结合多篇技术文档的实践与分析

一、离线高效识别

完全脱离网络依赖:所有语音处理均在本地完成,无需云端数据传输,既保障隐私安全又降低延迟
实时流式处理:采用流式API设计,支持音频数据的即时处理与响应,实现"零延迟"的实时转录
硬件兼容性强:从树莓派、Android手机到服务器集群均可部署,尤其适合物联网等资源受限场景

二、多语言与模型灵活性

覆盖20+语种:支持中文、英语、日语等主流语言及方言(如印度英语、加泰罗尼亚语),中文模型体积仅50MB左右
可扩展词汇库:允许开发者自定义词汇表和语法规则,通过调整模型参数提升特定场景识别准确率
模型分级选择:提供从42MB到1.3GB不同规模的预训练模型,兼顾边缘设备轻量化与服务器高精度需求

三、技术架构优势

基于Kaldi优化:继承Kaldi框架的声学模型与解码器,通过简化接口降低使用门槛,同时保留高性能特性
混合神经网络:采用TDNN(时延神经网络)与LSTM结合的深度学习模型,结合HMM音素建模技术提升识别鲁棒性
音频格式自适应:支持16kHz单声道WAV格式输入,提供重采样接口处理不同采样率音频

四、开发友好性

跨语言SDK支持:提供Python、C#、Java、Rust等十余种编程语言接口,满足全栈开发需求
快速集成示例:通过简单代码即可实现音频文件转录(如Python仅需20行代码)和麦克风实时监听
文档生态完善:官方提供模型下载、API文档及多平台部署指南(含Linux系统详细配置步骤)

五、应用场景广泛

智能硬件交互:适用于智能家居控制、车载语音系统等离线场景
媒体内容生产:自动生成电影字幕、会议记录文本,支持长音频批量处理
隐私敏感领域:医疗问诊录音、金融客服对话等需要数据本地化处理的场景

模型下载建议:中文用户推荐使用vosk-model-small-cn-0.22轻量模型(约50MB),可通过Vosk官网获取。实际部署时需注意音频采样率与模型要求的匹配,必要时使用FFmpeg进行格式转换。

Apache-2.0 许可证

官网地址:

https://alphacephei.com/vosk/models

模型列表

https://alphacephei.com/vosk/models

zipModel尺寸备注
vosk-model-cn-0.22.zipvosk-model-small-cn-0.2242MLightweight model for Android and RPi Apache 2.0
vosk-model-small-cn-0.22.zipvosk-model-cn-0.221.3GBig generic Chinese model for server processing

GitHub地址

https://github.com/alphacep/vosk-api

快速测试

安装依赖

pip3 install vosk

python代码

from vosk import Model, KaldiRecognizer
import pyaudio

# model = Model("E:\\src\\Gitee\\AudioTest\\vosk-model-cn-0.22")  # 下载中文模型
# model = Model(lang="en-us")
model = Model(lang="cn")  # 下载中文模型
recognizer = KaldiRecognizer(model, 16000)

mic = pyaudio.PyAudio()
stream = mic.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=8192)
stream.start_stream()

while True:
    data = stream.read(4096)
    if recognizer.AcceptWaveform(data):
        result = recognizer.Result()
        print(result)

测试输出

{
  "text" : "可是 一下"
}
{
  "text" : "测试 一下"
}
{
  "text" : "你 吃饭 了 吗"
}
{
  "text" : "怎么 那么多 空壳"
}
{
  "text" : ""
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值