PyTorch中,使用GPU对神经网络进行训练,只需要对网络、输入、损失函数进行修改。
方法一
import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# 准备数据集
train_data = torchvision.datasets.CIFAR10("../dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
train_dataloader = DataLoader(train_data,batch_size = 64)
test_dataloader = DataLoader(test_data,batch_size = 64)
# 搭建神经网络
class Mioird(nn.Module):
def __init__(self):
super(Mioird, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self,x):
x = self.model(x)
return x
mioird = Mioird()
if torch.cuda.is_available():
mioird = mioird.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
# 优化器
learning_rate = 0.01
optimizer = torch.optim.SGD(params=mioird.parameters(),lr = learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮次
epoch = 10
# 添加TensorBoard
writer = SummaryWriter("logs")
for i in range(epoch):
print("--------第{}轮训练开始-------".format(i+1))
start_time = time.time()
# 训练步骤开始
mioird.train()
for data in train_dataloader:
imgs,targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = mioird(imgs)
loss = loss_fn(outputs,targets)
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
end_time = time.time()
print("此轮训练耗时:{}".format(end_time - start_time))
# 测试步骤开始
mioird.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
if torch.cuda.is_available():
imgs,targets = data
imgs = imgs.cuda()
targets = targets.cuda()
outputs = mioird(imgs)
loss = loss_fn(outputs,targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print(("整体测试集上的正确率:{}".format(total_accuracy/test_data_size)))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step = total_test_step + 1
torch.save(mioird.state_dict(),"mioird_{}.pth".format(i+1))
print("模型已保存")
writer.close()
为了看得更清楚,我把对网络、输入、损失函数三部分的修改单独展示出来。若不加红字部分,则会在CPU上进行训练。
mioird = Mioird()
if torch.cuda.is_available():
mioird = mioird.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
imgs,targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
方法二
import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# 定义训练的设备
device = torch.device("cuda:0")
# 准备数据集
train_data = torchvision.datasets.CIFAR10("../dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("../dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
train_dataloader = DataLoader(train_data,batch_size = 64)
test_dataloader = DataLoader(test_data,batch_size = 64)
# 搭建神经网络
class Mioird(nn.Module):
def __init__(self):
super(Mioird, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self,x):
x = self.model(x)
return x
mioird = Mioird()
mioird.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
learning_rate = 0.01
optimizer = torch.optim.SGD(params=mioird.parameters(),lr = learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮次
epoch = 10
# 添加TensorBoard
writer = SummaryWriter("logs")
for i in range(epoch):
print("--------第{}轮训练开始-------".format(i+1))
start_time = time.time()
# 训练步骤开始
mioird.train()
for data in train_dataloader:
imgs,targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = mioird(imgs)
loss = loss_fn(outputs,targets)
#优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
end_time = time.time()
print("此轮训练耗时:{}".format(end_time - start_time))
# 测试步骤开始
mioird.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs,targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = mioird(imgs)
loss = loss_fn(outputs,targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print(("整体测试集上的正确率:{}".format(total_accuracy/test_data_size)))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step = total_test_step + 1
torch.save(mioird.state_dict(),"mioird_{}.pth".format(i+1))
print("模型已保存")
writer.close()
为了看得更清楚,我把对网络、输入、损失函数三部分的修改单独展示出来。若不加红字部分,则会在CPU上进行训练。
# 定义训练的设备
device = torch.device("cuda:0")
mioird = Mioird()
mioird.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
imgs,targets = data
imgs = imgs.to(device)
targets = targets.to(device)
感谢B站UP主【我是土堆】老师!!