图片来源:FreeImages
---
引言
深度学习技术的快速发展使得计算机视觉领域的对象检测和语义分割任务得以迅速进展。为了满足不同开发者的需求,出现了许多流行的深度学习框架,如TensorFlow、PyTorch、MXNet、Caffe等。框架具有其独特的特点和优势,方便开发者快速构建和训练自己的模型。本文对这些框架进行了综述,介绍它们在对象检测和语义分割任务中的应用和工具。
一、TensorFlow
TensorFlow是谷歌开发的一款深度开源学习框架,具有高度的灵活性和可扩展性。TensorFlow提供了丰富的API和工具,方便开发者进行模型设计、训练和部署。它支持CPU和GPU加速,可以在各种硬件平台上运行。