leetcode-207.课程表之有向图的环路检测(拓扑排序,DFS)

在这里插入图片描述
从题目可以很容易看出是需要建立有向图并检测是否有回边,即是否存在环路的问题!这个需要确定前驱课程已经学过的例子其实就是拓扑排序最经典的例子。
引用百度百科:
在这里插入图片描述

通常,我们把这种顶点表示活动、边表示活动间先后关系的有向图称做顶点活动网(Activity On Vertex network),简称AOV网。
例如,假定一个计算机专业的学生必须完成图3-4所列出的全部课程。在这里,课程代表活动,学习一门课程就表示进行一项活动,学习每门课程的先决条件是学完它的全部先修课程。如学习《数据结构》课程就必须安排在学完它的两门先修课程《离散数学》和《算法语言》之后。学习《高等数学》课程则可以随时安排,因为它是基础课程,没有先修课。若用AOV网来表示这种课程安排的先后关系,则如图3-5所示。图中的每个顶点代表一门课程,每条有向边代表起点对应的课程是终点对应课程的先修课。从图中可以清楚地看出各课程之间的先修和后续的关系。如课程C5的先修课为C2,后续课程为C4和C6。
由AOV网构造出拓扑序列的实际意义是:如果按照拓扑序列中的顶点次序,在开始每一项活动时,能够保证它的所有前驱活动都已完成,从而使整个工程顺序进行,不会出现冲突的情况。

如何求出拓扑排序呢?
由AOV网构造拓扑序列的拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止。
(1) 选择一个入度为0的顶点并输出之;
(2) 从网中删除此顶点及所有出边。
循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,否则输出的顶点序列就是一种拓扑序列。

拓扑排序代码:

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        vector<vector<int>> graph(numCourses,vector<int>(0,0));
        vector<int> indegree(numCourses,0); //记录入度
        vector<int> outdegree(numCourses,0); //记录出度
        queue<int> q; 
        for(int i=0;i<prerequisites.size();i++){ //建立图以及统计入度出度
            graph[prerequisites[i][0]].push_back(prerequisites[i][1]);
            outdegree[prerequisites[i][0]]++;
            indegree[prerequisites[i][1]]++;
        }
        int count = 0;
        for(int i=0;i<numCourses;i++){
            if(indegree[i] == 0){ //入度为0时入队
                q.push(i);
                count++;
            }
        }
        while(!q.empty()){
            int tmp = q.front();
            for(int i=0;i<graph[tmp].size();i++){ //出队时将邻接顶点的入度减一
                indegree[graph[tmp][i]]--;
                if(indegree[graph[tmp][i]] == 0){ //如减一后入度变为0了,入队
                    q.push(graph[tmp][i]);
                    count++;
                }
            }
            q.pop();
            
        }
        if(count == numCourses)
            return true;
        else
            return false;
    }
};

上面的方法是有向图求环路的拓扑排序方法,那么按理说DFS也是可以解决这个问题的。我们回顾一下无向图通过DFS求环路的方法,只要在DFS过程中遇到了已经被标记为已访问的顶点,那么说明存在环路,但是有向图并不能采用同样的方法,需要作出调整。
下面引用了:
有向图的几个算法分析总结

在这里插入图片描述在这里插入图片描述
通过上面这个两个图我们可以发现,若是在有向图中继续采用无向图DFS的方法会在由5去访问6的时候,认为6已访问便认为存在环,但是事实上在有向图中这并为成环!

在这里插入图片描述
再以上面这个图为例子,从8访问4的时候是可以认为成环的!为什么呢?我们再次碰到的节点4它还没有从前面向前递归的函数返回回来,结果又被遍历的时候给碰上了。这样,按照前面的分析,我们的环检测要点就是,找到一个还在遍历中的节点,同时在遍历的时候它如果再次被访问到了,则表示找到了环。而如果它被访问完了(已经出栈了)之后返回,则再次碰到它的时候就不是环了。
因此显然我们需要维护两个数组来记录顶点是否还在递归函数栈中以及定点是否已被访问,只有当顶点已被访问并且还在递归函数栈的时候就是检测到栈了!

DFS代码

class Solution {
public:
    bool flag = true; // 记录是否有环
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        vector<vector<int>> graph(numCourses,vector<int>(0,0)); //构造有向图关系
        vector<int> onStack(numCourses,0); //记录顶点是否还在递归栈中
        vector<int> visited(numCourses,0); //记录顶点是否已经被访问
        for(int i=0;i<prerequisites.size();i++){
            graph[prerequisites[i][0]].push_back(prerequisites[i][1]);
            onStack[prerequisites[i][0]] = 0;
            onStack[prerequisites[i][1]] = 0;
            visited[prerequisites[i][0]] = 0;
            visited[prerequisites[i][1]] = 0;
        }
        for(int i=0;i<numCourses;i++){
            if(visited[i] == 0)
                DFS(graph,onStack,visited,i);
            if(flag == false)
                return false;
        }
        return flag;
        
    }

    void DFS(vector<vector<int>>& graph,vector<int>& onStack,vector<int>& visited,int target){
        onStack[target] = 1; //标记入递归栈
        visited[target] = 1; //标记已访问
        for(int i=0;i<graph[target].size();i++){
            if(visited[graph[target][i]] == 0)
                DFS(graph,onStack,visited,graph[target][i]);
            else{
                if(onStack[graph[target][i]] == 1){ //同时满足在递归栈中并且已访问,说明成环!
                    flag = false;
                    return;
                }
            }
        }
        onStack[target] = 0; //标记出递归栈
    }
};
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值