离散数学 第十六章 环和域

本文探讨了环的数学概念,包括其定义、性质以及特殊类型的环如模k剩余类环和布尔环。同时,介绍了整环和域的定义,强调了无零因子的重要性,并阐述了环的子环和域的性质。移向法则和零因子的概念也在讨论范围内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

16.1 环的定义及其性质

16.2 整环和域


16.1 环的定义及其性质

定义:一个代数系统<R,+,\ast>,如果满足:

(1)<R,+>是阿贝尔群;——>群+交换

(2)<R,\ast>是半群;——>封闭,可结合

(3)乘法\ast在加法+上可分配。即对\forall a,b,c\in R

                a\ast(b+c)=(a\ast b)+(a\ast c)

                (b+c)\ast a=(b\ast a)+(c\ast a)

则称<R,+,\ast>是一个环。

<Z_{k},\oplus ,\otimes >是环,称为模k剩余类环

        k=2——>布尔环

定理:(移向法则)设<R,+,\ast>是一个环,θ是加法幺元,对\forall a,b,c\in R有:

a+b=c<=>a+b-c=θ

a\ast \theta =\theta \ast a=\theta(加法幺元是乘法零元)

a\ast (-b)=-(a\ast b)=(-a)\ast b

(-a)\ast (-b)=a\ast b

a\ast (b-c)=(a\ast b)-(a\ast c)

(b-c)\ast a=(b\ast a)-(c\ast a)

定义:设<R,+,\ast>是环,a,b\in R。如果a\neq \thetab\neq \theta,而a\ast b=\theta则称a和b是R中的零因子。

16.2 整环和域

※特殊环

定理:设<R,+,\ast>是一个环,则R中无零因子当且仅当对\forall a,x,y\in R,当a\neq 0时,a\ast x=a\ast y\Rightarrow x=yx\ast a=y\ast a\Rightarrow x=y

定义:设<R,+,\ast>是一个环,S是R的非空集合,如果<S,+,\ast>也是一个环,则称S是R的子环。

※环的同构与同态

 

※域

定义:设<R,+,\ast>是一个环,如果<R,+><R-\left \{ \theta \right \},\ast>都是交换群,则称<R,+,\ast>是域。

定理:有限整环<R,+,\ast>必是域(域一定是整环)

整环:可换,含幺,无零因子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值