目录
16.1 环的定义及其性质
定义:一个代数系统,如果满足:
(1)是阿贝尔群;——>群+交换
(2)是半群;——>封闭,可结合
(3)乘法在加法+上可分配。即对
有
则称是一个环。
※是环,称为模k剩余类环
k=2——>布尔环
定理:(移向法则)设是一个环,θ是加法幺元,对
有:
a+b=c<=>a+b-c=θ
①(加法幺元是乘法零元)
②
③
④
⑤
定义:设是环,
。如果
且
,而
,则称a和b是R中的零因子。
16.2 整环和域
※特殊环
定理:设是一个环,则R中无零因子当且仅当对
,当
时,
或
定义:设是一个环,S是R的非空集合,如果
也是一个环,则称S是R的子环。
※环的同构与同态
※域
定义:设是一个环,如果
和
都是交换群,则称
是域。
定理:有限整环必是域(域一定是整环)
整环:可换,含幺,无零因子