题目:
给定一个长度为 n 的整数数组 nums ,其中 nums 是范围为 [1,n] 的整数的排列。还提供了一个 2D 整数数组 sequences ,其中 sequences[i] 是 nums 的子序列。
检查 nums 是否是唯一的最短 超序列 。最短 超序列 是 长度最短 的序列,并且所有序列 sequences[i] 都是它的子序列。对于给定的数组 sequences ,可能存在多个有效的 超序列 。
例如,对于 sequences = [[1,2],[1,3]] ,有两个最短的 超序列 ,[1,2,3] 和 [1,3,2] 。
而对于 sequences = [[1,2],[1,3],[1,2,3]] ,唯一可能的最短 超序列 是 [1,2,3] 。[1,2,3,4] 是可能的超序列,但不是最短的。
如果 nums 是序列的唯一最短 超序列 ,则返回 true ,否则返回 false 。
子序列 是一个可以通过从另一个序列中删除一些元素或不删除任何元素,而不改变其余元素的顺序的序列。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/ur2n8P
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
看了题解,说是用有向无环图合适,若要满足题目条件,确实是拓扑排序过程中,每次删除一个节点后都只能有一个入度为0的点
代码思路如下:
定义数组装载入度,可以放弃第一个元素。因为他入度本身为0。同时可以忽略索引0的问题。直接用数值做下标即可
定义图结构,map<Integer, Set> 记录一对多节点的关系
先构造出图,统计出入度。筛选出入度为0的节点入队。若当前队列元素> 1 。直接返回false。不唯一
否则出队后,对其下面的节点进行入度-1。若执行后入度为0入队。继续循环。直到队列为空都未曾发生过入度为0的元素超过2个。说明确实只有一种超序列。
public boolean sequenceReconstruction(int[] nums, int[][] sequences) {
Map<Integer, Set<Integer>> map = new HashMap();
int n = nums.length;
int[] degree = new int[n + 1];
for (int i = 0;i < sequences.length;i++) {
for (int j = 1;j < sequences[i].length;j++) {
int from = sequences[i][j - 1];
int to = sequences[i][j];
degree[to]++;
if (map.containsKey(from) && map.get(from).contains(to)) {
continue;
} else {
map.putIfAbsent(from, new HashSet());
map.get(from).add(to);
}
}
}
Queue<Integer> queue = new LinkedList();
for (int i = 1;i < n + 1;i++) {
if (degree[i] == 0) {
queue.offer(i);
}
}
while (!queue.isEmpty()) {
if (queue.size() > 1) {
return false;
}
int du = queue.poll();
if (map.get(du) == null) {
continue;
}
for (int i : map.get(du)) {
degree[i]--;
if (degree[i] == 0) {
queue.offer(i);
}
}
}
// 判断入度为0的是不是唯一
return true;
}
不管咋样,学习到了拓扑排序,还是开心的,继续努力吧