win10共享设置everyone访问权限,仍需输入用户名密码 解决方案

 

局域网内,共享文件,设置了everyone可以访问的权限,但是另外一台计算机访问的时候有时候仍然需要用户名、密码。

解决方案:

在共享文件的计算机上设置:

1.关闭windows防火墙

2.右击 网络--属性-更改高级共享设置,在 所有网络中,密码保护的共享,无密码保护的共享,并保存。

在音乐行业中,利用Pandas对收入数据进行统计分析可以帮助我们更好地理解音乐市场的动态、艺术家的收益分布以及不同类型的音乐或活动的表现。Pandas是一个强大的Python数据分析库,它提供了一系列的数据结构(如DataFrame和Series)和函数,非常适合处理结构化数据。 首先,你要导入Pandas并读取包含音乐行业收入数据的CSV文件或数据库。例如,数据可能包括艺术家姓名、专辑名称、销售量、流媒体播放次数、演唱会门票销售额等字段。 ```python import pandas as pd # 读取数据 music_data = pd.read_csv('music_income_data.csv') # 查看数据前几行 print(music_data.head()) ``` 接着,你可以使用Pandas的功能来进行基本的描述性统计: ```python # 描述性统计 summary_stats = music_data.describe() print(summary_stats) ``` 通过`groupby`函数,可以按类别(如艺人、专辑类型等)分组计算平均收入: ```python # 按艺人统计平均收入 artist_revenue = music_data.groupby('Artist')['Revenue'].mean() print(artist_revenue) # 或者按年度和类型统计 yearly_revenue_by_type = music_data.groupby(['Year', 'Genre'])['Revenue'].sum() print(yearly_revenue_by_type) ``` 此外,还可以使用Pandas画出柱状图或折线图展示趋势,比如收入随时间的变化,或者不同类型的音乐收入对比: ```python import matplotlib.pyplot as plt # 年度收入变化图 plt.figure(figsize=(10,6)) music_data['Year'].value_counts().sort_index().plot(kind='bar') plt.title('年度音乐收入分布') plt.xlabel('年份') plt.ylabel('收入(单位)') plt.show() # 类型间收入比较 plt.figure(figsize=(10,6)) yearly_revenue_by_type.unstack().plot(kind='bar') plt.title('不同类型音乐收入比较') plt.xlabel('类型') plt.xticks(rotation=45) # 旋转标签以避免重叠 plt.ylabel('收入(单位)') plt.legend(title='年份') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值