朴素贝叶斯基本原理&sklearn实现

理论

先验概率:根据以往的分析经验得到的概率,先验概率不需要样本数据
后验概率:根据数据的特征进行分析
联合概率:几个事件同时发生的概率,P(瓜熟,瓜蒂脱落)

  1. 定义
    贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。 而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法, 分类原理就是利用 ### 贝叶斯公式 ### 根据某特征的先验概率计算出其后验概率,然后选择具有最大后验概率作为该特征所属的类。
    贝叶斯公式:。。。。
    转化: ### p(类别|特征)=p(特征|类别)*p(类别)/p(特征) ###

    朴素贝叶斯:假设 ### 各个特征之间相互独立 ###

  2. 拉普拉斯平滑
    在某个分类下, 为防止训练集中某个特征值和某个类别未同时出现过,导致预测概率为0。 所以需要进行平滑处理 。当平滑系数为1时,为拉普拉斯平滑。

  3. sklearn中的朴素贝叶斯算法 api, 参考:https://zhuanlan.zhihu.com/p/366787872

在scikit-learn库,根据特征数据的先验分布不同,给我们提供了5种不同的朴素贝叶斯分类算法
(sklearn.naive_bayes: Naive Bayes模块),分别是
        伯努利朴素贝叶斯(BernoulliNB),
        类朴素贝叶斯(CategoricalNB),
        高斯朴素贝叶斯(GaussianNB)、
        多项式朴素贝叶斯(MultinomialNB)、
        补充朴素贝叶斯(ComplementNB) 。
  1. 朴素贝叶斯分类器适用于以下场景
    朴素贝叶斯分类器的应用场景非常广泛,只要能将问题转化为分类问题,且能够使用先验概率和条件概率来描述问题,都可以考虑使用朴素贝叶斯分类器。
1.文本分类:可以用于垃圾邮件过滤、新闻分类、情感分析等。
2.个性化推荐:可以用于基于用户历史数据进行推荐,如购物网站的商品推荐、音乐推荐等。
3.生物信息学:可以用于基因分类、蛋白质分类等。
4.医学诊断:可以用于疾病分类、药物疗效预测等。
5.图像识别:可以用于图像分类、人脸识别等
6.金融风险评估:可以用于信用评估、欺诈检测等。

实例


import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

# 导入数据集
digits = load_digits()

X = digits.data
y = digits.target

# 划分测试集和训练数据集,划分后,训练数据1257个样本,测试数据集540个样本
xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, random_state=0)

# 查看标签种类
np.unique(ytrain)

# 实例化模型并且训练模型,其中fit()过程就是在计算概率的过程
gnb = GaussianNB().fit(xtrain, ytrain)

# score()接口对于我们的分类型算法,返回预测的精确性,也就是accuracy,使用测试数据集测试
acc_score = gnb.score(xtest, ytest)

# 返回所有样本对应的类别,这里的样本标签是用我们下面得到的概率中,
# 选取每一个样本中概率最大的作为此样本的标签
y_pred = gnb.predict(xtest)

# 查看我们的概率结果
yprob = gnb.predict_proba(xtest)
# 可以看到,返回的结果是540*10的二维矩阵,其中应为分类有10个,所以一共返回10列概率
# 取其中概率最大的哪一个分类作为最后的分类结果,并且每一行的概率之和是1


import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB, ComplementNB

h = .02
# 模型的名字
names = ["Multinomial", "Gaussian", "Bernoulli", "Complement"]
# 创建我们的模型对象
classifiers = [MultinomialNB(), GaussianNB(), BernoulliNB(), ComplementNB()]
# 创建分类数据集
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                           random_state=1, n_clusters_per_class=1)
# 月亮刑数据
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
            make_circles(noise=0.2, factor=0.5, random_state=1),
            linearly_separable
            ]
# 创建画布
figure = plt.figure(figsize=(6, 9))
i = 1

for ds_index, ds in enumerate(datasets):
    X, y = ds
    #     标准化数据集
    X = StandardScaler().fit_transform(X)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4, random_state=42)
    #     对画布画网格线
    x1_min, x1_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    x2_min, x2_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    array1, array2 = np.meshgrid(np.arange(x1_min, x1_max, 0.2),
                                 np.arange(x2_min, x2_max, 0.2))
    cm = plt.cm.RdBu
    cm_bright = ListedColormap(['#FF0000', '#0000FF'])
    ax = plt.subplot(len(datasets), 2, i)
    if ds_index == 0:
        ax.set_title("Input data")
    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train,
               cmap=cm_bright, edgecolors='k')
    ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test,
               cmap=cm_bright, alpha=0.6, edgecolors='k')
    ax.set_xlim(array1.min(), array1.max())
    ax.set_ylim(array2.min(), array2.max())
    ax.set_xticks(())
    ax.set_yticks(())
    i += 1
    ax = plt.subplot(len(datasets), 2, i)
    clf = GaussianNB().fit(X_train, y_train)
    score = clf.score(X_test, y_test)
    Z = clf.predict_proba(np.c_[array1.ravel(), array2.ravel()])[:, 1]
    Z = Z.reshape(array1.shape)
    ax.contourf(array1, array2, Z, cmap=cm, alpha=.8)
    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
               edgecolors='k')
    ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
               edgecolors='k', alpha=0.6)
    ax.set_xlim(array1.min(), array1.max())
    ax.set_ylim(array2.min(), array2.max())
    ax.set_xticks(())
    ax.set_yticks(())
    if ds_index == 0:
        ax.set_title("Gaussian Bayes")
    ax.text(array1.max() - .3, array2.min() + .3, ('{:.1f}%'.format(score * 100)),
            size=15, horizontalalignment='right')
    i += 1
plt.tight_layout()
plt.show()
  • 7
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
朴素贝叶斯算法原理: 朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立假设的分类算法。其基本思想是对于给定的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个类别的概率最大,就认为此待分类项属于哪个类别。具体来说,朴素贝叶斯算法假设每个特征与其他特征之间相互独立,即每个特征都独立地对分类结果产生影响。在实际应用中,朴素贝叶斯算法常用于文本分类、垃圾邮件过滤等领域。 Python实现Python中有多个库可以实现朴素贝叶斯算法,其中比较常用的是scikit-learn库。下面是一个简单的示例代码,用于展示如何使用scikit-learn库实现朴素贝叶斯算法进行文本分类: ```python from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import CountVectorizer # 构建训练数据 train_data = ['this is a good book', 'this is a bad book', 'good day', 'bad day'] train_labels = ['positive', 'negative', 'positive', 'negative'] # 构建特征提取器 vectorizer = CountVectorizer() # 将文本转换为特征向量 train_features = vectorizer.fit_transform(train_data) # 构建朴素贝叶斯分类器 clf = MultinomialNB() # 训练分类器 clf.fit(train_features, train_labels) # 构建测试数据 test_data = ['good book', 'bad book', 'happy day'] test_features = vectorizer.transform(test_data) # 进行预测 predicted_labels = clf.predict(test_features) # 输出预测结果 print(predicted_labels) # 输出:['positive' 'negative' 'positive'] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值