一个有趣的 5 X 5 方阵一笔画问题

本文讲述了作者在解决一个5x5方阵一笔画问题的过程中,发现该问题实际上是一个数学难题,并揭示了其不可能存在的解决方案。大学同学通过数学方法证明了这一点。尽管如此,作为程序员的作者仍然对此感到好奇,动手编写了可视化寻路算法,实现了对类似问题的程序化探索。相关文章链接提供进一步阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

image.png
  这个问题是在我上小学时同学告诉我的,当时觉得好玩,就随便瞎画这玩儿,不过从小学到大学,没有一次画成功过。这个问题起初同学告诉我的时候,图不是这样画的,我只是为了好表达,将问题抽象成网格了,原问题是说有25个小球,如下图:
image.png
用一笔画,将所有蓝色小球串起来,要求画出的线不允许超过矩阵之外,不允许斜,且每个小球只被经过一次。
两种对问题描述的本质是一样的。
  答案是我的大学同学用数学方法找到的,本质上这确实是一个数学问题,他给出的结论是:不可能存在一条满足要求的路线,证明过程如下:
image.png
  将小球相间着涂成不同颜色,这样,就出现黑球相邻的周围是白球,白球相邻的周围是黑球(忽略橙色球)。换句话说,假如要连线的话,被这条线连起来的小球形成的顺序串儿,一定是黑白小球相间的,不可能出现同色小球相邻。另外,数一数黑色和白色小球的个数,你会发现,黑球有13个,白球有11个,这就存在一个矛盾:要求把所有黑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大象与工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值