此篇文章源自对一个有趣问题的思考,在我的另一篇博文《一个有趣的 5 X 5 方阵一笔画问题》中有详细介绍。在已知其结论的情况下,作为程序员的我,还是想利用该问题当做出发点,写一个可以遍历所有“可能路线”的寻路算法,当做学习“图”相关算法的练习。如果对那个原始问题有兴趣,点击上面的文章链接,出门右转便是。
一、问题回顾
还是要简单描述一下问题:有一个 5 X 5 的点方阵,如下图,要想用一笔画将所有的蓝色点连起来,是否有可行路线。需要满足3点要求:
1、笔画必须水平或垂直。
2、笔画不可以超出方阵边界之外,
3、每个点只经过一次,且不可以经过黄色点。
这个问题的数学证明已经在开头的文章中给出,在此不做赘述。这里只考虑它的算法实现。
在思考算法之前,需要先对问题进行抽象分析,我们可以将上面的问题理解成下图这样 :
二、抽象分析
由于题目已经被数学证明没有一条路线能够满足题目要求,所以算法的目的不是为了找到所谓符合要求的路线,而是遍历从出发点向网格中所有点可形成的所有路线。可以假设上面的网格是一个地图,小明同学按照地图在网格中行走,目的是找出从出发点到所有点的所有路线。小明先在地图中规定坐标,网格底边作为x轴,左侧的竖边作为y轴,那么红色五角星坐标就是(1,4)。小明从原点开始出发,刚开始时地图中所有的交叉点都被标记“未走过”标识。小明随机选择下一个点,假如依次经过(0,0)、(1,0)、(1,1)、(2,1)、(2,2)、(3,2)、(4,2)、(4,1)、(4,0)、(3,0)、(3,1),每往前走一个点,他都会在地图的相应位置标记已经走过。走到(3,1)时,由于四周的(2,1)、(3,2)、(4,1)都已经走到过,所以往前是无路可走的,只能逐步回退,回退之前小明为了下次不再重新走这个线路,他将这个线路记到了本子上,并标记本路线为历史路线,然后回退,每回退一步小明都会在离开的那个位置将“已走过”的标记涂抹掉并改为“未走过”标识,因为这样当下次从其他路线走时还可以走那个位置。当回退到(3,0)时,(3,1)位置就会由标记“已走过”改为标记“未走过”的状态,并发现临近的(2,0)还没有走过,于是不再回退,转向(2,0)。到达(2,0)时,又出现了无路可走的情况,于是记录当下的路线,然后回退并标记地图。当回退到(3,0)时,虽然会发现(3,1)是“未走过”状态,但由于如果走(3,1)的话就会发现这条路线在笔记本的历史路线中已经出现过,所以依然不能走(3,1),继续回退,按照这个原则一直走下去,直到遍历完从起点出发到达地图上所有点的所有路线,小明最终一定会回到起点。此时他笔记本中的历史路线列表,就是从起点达地图上所有点的所有路线。
三、算法分析
考虑到算法的实现,这显然是利用了数据结构中的“图”。每一次路线尝试,都是对图的深度遍历,算法要做的事情,无非就是随机选择起点,然后不断地深度遍历新的路线。每往前走一步,就将新位置放进栈。这里要注意的是,针对每一次尝试,当走到无路可走时,并不意味着24个点全部已经遍历到了,因为根据规则,无路可走的原因可能是当下点的四周位置(下面统称为“邻居”)已经全部走过了,即它们已经在栈中了,或者是走到了边角的位置。那么此时无路可走该怎么办呢?是重新从起点开始呢,还是怎样。理论上都可行,不过考虑到效率,即让算法尽量少做重复的事情,我选择在无路可走时,将当下的路线(一个由点序列组成的数组)做记录(存入一个集合中,这个集合记录着所有历史路线),然后回退并将离开的位置从栈弹出,每次回退都将当下路线记录为历史路线,直到周围存在“没有在栈中的点”时不再回退,而是转向新的位置。此时,最近一次回退的那个历史路线决定了下次不会再走这个路线的方向。(假如连续回退了N步,那么最近一次回退的那个历史路线则是临近前N-1次回退历史路线的子集)。不断以上面的方式进行下去,由于“地图”是有限的,当所有可能路线全部遍历过时,最终一定会回到起点。此时历史路线集合列表,记录了从起点达地图上所有点的所有路线。
四、算法描述:
1、输入:一个二维数组M[26][5]。(第一维度角标1到4分别代表上右下左四个方向,第二维度角标1到25分别代表图的每个点,一次从地图的左上到右下为1到25。数组中的每个值,比如M[20][1]=15 表示地图编号为20的点的上边是编号为15的点,M[20][2]=0表示地图编号为20的点的右方没有通路。其中M[i][0]=0,M[0][j]=0)
2、初始化:定义栈Q = {1} 和 集合H = {} .(Q中记录了当下路径中依次走过的所有点,H记录着所有的历史路径。)
3、重复以下动作,直到 Q = {}:
根据Q的栈顶元素d,和邻接表M找出d的所有临近点元素,从其中随机选择一个元素,且Q中不存在该元素,若找到,将该元素放入Q中。若找不到,则将Q的副本存入H中,并将d从Q中弹出。
4、输出:H。
五、算法实现
到这里,对原始问题的抽象思考过程和算法的理论分析过程已经描述完毕。下面就是用实际的代码实现该算法并做到可视化。如果不考虑可视化,那么随便一个编程语言都可以很方便的实现它,我之前用java写过,将结果输出在控制台那种。不过感觉没啥意思,还是想要可视化的感觉。当时很长一段时间我都不知道如何将它可视化,直到我遇到了React,深入了解后,发现用React来完成该算法的可视化,真是再合适不过了。
由于React是面向组件开发的模式,并且可以很容易根据状态来自动渲染页面,所以可视化部分的设计,就变成对原始“地图”的拆解和状态的定义。我设计的最基础的组件和整体样式如下图这样:
每个位置(点)都有上下左右四个方向,点与点之间,如果存在连线,则将对应方向的线条用CSS渲染成“block”,其他渲染成“none”.这个过程在定义好CSS样式后,根据数据状态,React会自动帮助界面渲染,不需要反复用js写渲染逻辑。
最终效果请点击这个 程序链接1 或程序链接2 查看。以下附带部分代码。另外关于实现过程中对性能的优化,我已经做了一些努力,以后也会不断对其优化,欢迎有兴趣的朋友提出高见。
import React, {
Component } from 'react';
import './AppDemo.css';
import Grid from './Grid';
class AppDemo extends Component {
constructor(proprs) {
super(proprs);
var width = 5;
var height = 5;
var matrix = this.init(width,height);
var x = 50;
var start = Math.floor(Math.random() * width * height + 1);
this.state = {
matrix: matrix,
start: start,
arr: [start],
historyPath: [],
width: width,
height: height,
timeID: 0,
speed: 5,
random: true,
x: x,
time: 0
}
}
init(width,height){
var matrix = [[0, 1, 2, 3, 4]];
for (var numb = 1; numb <= width * height; numb++) {
var up = numb > width ? numb - width : 0;
var right = (numb % width) !== 0 ? numb + 1 : 0;
var down = numb <= width * (height - 1) ? numb + width : 0;
var left = ((numb - 1) % width) !== 0 ? numb - 1 : 0;
var arr = [numb];
arr.push(up);
arr.push(right);
arr.push(down);
arr.push(left);
matrix.push(arr);
}
return matrix;
}
handle() {
//var beginTime1=0;
//var beginTime2=0;
//beginTime1 = new Date().getTime();
var nowRow = this.state.arr[this.state.arr.length - 1];//获取当下的位置编号
var arr = this.state.arr;//路径编号
var matrix = this.state.matrix;//矩阵存储结构
var historyPath = this.state.historyPath;//历史路径
if (arr.length > 0) {
//如果路径长度>0
var next = false;//默认找不到路径
var ran = 1
if (