细粒度分类

本文介绍了细粒度分类的四种主要方法:基于微调的网络、细粒度特征学习、目标块检测与对齐以及视觉注意机制。重点讨论了Bilinear CNN、目标检测的重要性以及视觉注意机制的优势。此外,还提及了WS-DAN模型,其特点包括双线性注意力池化、类center loss注意力监督和基于注意力的数据增强。
摘要由CSDN通过智能技术生成

细粒度分类方法主要分为四类:
1)基于常规图像分类的网络的微调方法
2)基于细粒度特征学习的方法
3)基于目标块的检测和对齐的方法
4)基于视觉注意机制的方法

1)常规分类模型并不能很好的区分细粒度图像,常用的方法是采用迁移学习,将ImageNet的预训练过的网络权重进行微调,另外还有对loss进行改进,例如使用triplet loss
在这里插入图片描述

2)基于细粒度特征学习的方法
Bilinear CNN ,采用VGG-D和VGG-M作为基准网络,不使用bounding Box的情况下,CUB200-2011精度84.1%
在这里插入图片描述
在这里插入图片描述
fA:fB 分别提取的特征纬度为KM与KN

3)基于目标块检测的方法
方法思路:先在图像中检测出目标所在位置,再检测出目标中有区分性的区域位置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值