给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。
k==n,只有一个结果。因为组合不考虑顺序。
如果是返回结果有多少种,利用组合公式即可。
class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> combine(int n, int k) {
if (k <= 0 || n < k) {
return res;
}
Deque<Integer> path = new ArrayDeque<>();
dfs(n, k, 1, path);
return res;
}
private void dfs(int n, int k, int begin, Deque<Integer> path) {
// 递归终止条件是:path 的长度等于 k
if (path.size() == k) {
res.add(new ArrayList<>(path));
return;
}
// 遍历可能的搜索起点
// for (int i = begin; i <= n; i++) {
// 剪枝后 代码时间16ms -> 1ms
// 剪枝代码
for (int i = begin; i <= n - (k - path.size()) + 1; i++) {
// 向路径变量里添加一个数
path.addLast(i);
// 下一轮搜索,设置的搜索起点要加 1,因为组合数理不允许出现重复的元素
dfs(n, k, i + 1, path);
// 重点理解这里:深度优先遍历有回头的过程,因此递归之前做了什么,递归之后需要做相同操作的逆向操作
path.removeLast();
}
}
}
(k - path.size()) 代表还有几位数就凑够k位数了 用来剪枝。
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。因为有和的限制,所以加一个sum判断,因为是正整数 所以可以有两处剪枝的地方。
class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
if (n <= 0 || n > 45) {
return res;
}
Deque<Integer> path = new ArrayDeque<>();
dfs(n, k, 0, 1, path);
return res;
}
private void dfs(int target, int k, int sum, int begin, Deque<Integer> path) {
if(sum > target) return; // 剪枝
if (path.size() == k) {
if(sum == target){
res.add(new ArrayList<>(path));
return;
}
}
for (int i = begin; i <= 9 - (k - path.size()) + 1; i++) {// 剪枝
path.addLast(i);
sum += i;
dfs(target, k, sum, i + 1, path);
sum -= i;
path.removeLast();
}
}
}
电话号码
这道题需要收集树的所有子节点的值,无法剪枝。正常回溯即可。
class Solution {
List<String> res = new ArrayList<>();
String[] strs = {"","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"};
public List<String> letterCombinations(String digits) {
int n = digits.length();
if(n==0) return res;
StringBuilder s = new StringBuilder();
dfs(digits,0,n,s);
return res;
}
public void dfs(String digits,int index,int n,StringBuilder s){
if(index==n){
res.add(s.toString());
return;
}
int num = digits.charAt(index) - '0';
String str = strs[num];//'abc'
for (int i = 0; i < str.length(); i++) {
s.append(str.substring(i,i+1));
dfs(digits,index+1,n,s);
s.replace(s.length()-1,s.length(),"");
}
}
}
给定⼀个⽆重复元素的数组 candidates 和⼀个⽬标数 target ,找出 candidates 中所有可以使数字和为
target 的组合。
candidates 中的数字可以⽆限制重复被选取
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
int len = candidates.length;
List<List<Integer>> res = new ArrayList<>();
if (len == 0) {
return res;
}
// 排序是剪枝的前提
Arrays.sort(candidates);
Deque<Integer> path = new ArrayDeque<>();
dfs(candidates, 0, len, target, path, res);
return res;
}
private void dfs(int[] candidates, int begin, int len, int target, Deque<Integer> path, List<List<Integer>> res) {
// 由于进入更深层的时候,小于 0 的部分被剪枝,因此递归终止条件值只判断等于 0 的情况
if (target == 0) {
res.add(new ArrayList<>(path));
return;
}
for (int i = begin; i < len; i++) {
// 重点理解这里剪枝,前提是候选数组已经有序,
if (target - candidates[i] < 0) {
break;// 当前这一支全都pass
}
path.addLast(candidates[i]);// path存放当前已经选择的队列
dfs(candidates, i, len, target - candidates[i], path, res);
path.removeLast();
}
}
}
candidates中的每个数字在每个组合中只能使用一次。
class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> res = new ArrayList<>();
if (candidates.length == 0) {
return res;
}
// 排序是剪枝的前提
Arrays.sort(candidates);
Deque<Integer> path = new ArrayDeque<>();
dfs(candidates, 0, target, path, res);
return res;
}
private void dfs(int[] candidates, int begin, int target, Deque<Integer> path, List<List<Integer>> res) {
// 由于进入更深层的时候,小于 0 的部分被剪枝,因此递归终止条件值只判断等于 0 的情况
if (target == 0) {
res.add(new ArrayList<>(path));
return;
}
for (int i = begin; i < candidates.length; i++) {
// 重点理解这里剪枝,前提是候选数组已经有序,
if (target - candidates[i] < 0) {
break;// 当前这一支全都pass
}
if(i>begin && candidates[i] == candidates[i-1] ){
continue;//这样就不会有重复的组合
} // i>begin 不能省略,因为 1 1 2 这种情况同一个路径上 第一个数字不需要判断
path.addLast(candidates[i]);// path存放当前已经选择的队列
dfs(candidates, i+1, target - candidates[i], path, res);
path.removeLast();
}
}
}
第78题. ⼦集
class Solution {
List<Integer> t = new ArrayList<Integer>();
List<List<Integer>> ans = new ArrayList<List<Integer>>();
//[[1,2,3],[1,2, ],[1,3, ],[1, , ],[2,3, ],[2, , ],[3, , ],[]]
public List<List<Integer>> subsets(int[] nums) {
dfs(0, nums);
return ans;
}
public void dfs(int startIdx, int[] nums) {
ans.add(new ArrayList<>(t));
if(startIdx >= nums.length)return;
for (int i = startIdx; i < nums.length; i++) {
t.add(nums[i]);
dfs(i+1, nums);
t.remove(t.size() - 1);
}
}
}
90.子集II
class Solution {
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
public List<List<Integer>> subsetsWithDup(int[] nums) {
if (nums.length == 0){
result.add(path);
return result;
}
Arrays.sort(nums);
subsetsWithDupHelper(nums, 0);
return result;
}
private void subsetsWithDupHelper(int[] nums, int startIndex){
result.add(new ArrayList<>(path));
if (startIndex >= nums.length){
return;
}
for (int i = startIndex; i < nums.length; i++){
if (i > startIndex && nums[i] == nums[i - 1]){
continue;
}
path.add(nums[i]);
subsetsWithDupHelper(nums, i + 1);
path.removeLast();
}
}
}
491.递增⼦序列
4 6 7 8 7 9
class Solution {
private List<Integer> path = new ArrayList<>();
private List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backtracking(nums,0);
return res;
}
private void backtracking (int[] nums, int start) {
if (path.size() > 1) {
res.add(new ArrayList<>(path));
}
int[] used = new int[201];
for (int i = start; i < nums.length; i++) {
if (!path.isEmpty() && nums[i] < path.get(path.size() - 1) ||
(used[nums[i] + 100] == 1)) continue;
used[nums[i] + 100] = 1;
path.add(nums[i]);
backtracking(nums, i + 1);
path.remove(path.size() - 1);
}
}
}