什么是线性代数(Linear algebra)?

什么是代数

代数的英文是Algebra,这个英文源自一个阿拉伯语“al jebr”,意思是 破碎部分的重新组合。这个意思促进了我代数的概念的理解。在代数中,我们会使用基本的算术(加、减、乘、除),便是对于要处理的量通常是未知的,我们会用一些字符,如字母来暂时代替这些量,这也是为什么它们会用字母来表示的原因,先用个占位符占着那个位置先。如a+b+bc = 100, 字母a、b和c都代表了一个数字。在实际处理时,才会代入具体的数字到占位符上。这颇有将数字重新组合在一起的意味。

所以代数就是这些用于代表数字的字符或字母,代数存在于一个数学方程式中,离开数学方程式来谈代数这个概念是没有意义的。换句说,如果一个数字方程式中存在用来代表一些具体的数字的字符或字母,那么这就是在用代数处理方程式问题了。

什么是方程式

方程式,英文equation,在equation这个单词的开始部分equa和equal、equality、equate相似,都与使用事物平衡有关。所以方程式(equation)就是两个量相等的表述,用=等号连接。

线性方程(Linear equation)

线性方程就是有n变量x1…xn,形如a1x1+a2x2+…+anxn=b的方程,其中a1…an是方程的系数。所谓系数(coefficient)就是一个常量,coefficient在英文中的意思就是结合在一起产生结果。在代数中就是那个和字符或字母(变量)乘在一起的数字常量。

在代数中,线性方程是方程类型之一,其他的方程类型还有二次方程(quadratic equation)、三次方程(cubic equation)等等。方程的次数是方程中变量的最高次幂。最高次数为2就叫二次方程,最高次数为3就叫三次方程,依次类推。方程中的最高次幂叫做方程的度也叫方程的阶。

一次方程也叫线性方程,线性方程只包含线性项。所谓线性项就是变量指数为1的项。如x2 + bx = 120 (b为系数),在这个二次方程中bx就是线性项,因其变量的最高次幂为1.
!!! 二次方程不是线性方程

未完待续…

About the Author David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. David Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has published more than 30 research articles on functional analysis and linear algebra. As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, David Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also a coauthor of several mathematics texts, including Introduction to Functional Analysis with Angus E. Taylor, Calculus and Its Applications, with L. J. Goldstein and D. I. Schneider, and Linear Algebra Gems–Assets for Undergraduate Mathematics, with D. Carlson, C. R. Johnson, and A. D. Porter. David Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar—Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America’s Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. David Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences. Steven R. Lay began his teaching career at Aurora University (Illinois) in 1971, after earning an M.A. and a Ph.D. in mathematics from the University of California at Los Angeles. His career in mathematics was interrupted for eight years while serving as a missionary in Japan. Upon his return to the States in 1998, he joined the mathematics faculty at Lee University (Tennessee) and has been there ever since. Since then he has supported his brother David in refining and expanding the scope of this popular linear algebra text, including writing most of Chapters 8 and 9. Steven is also the author of three college-level mathematics texts: Convex Sets and Their Applications, Analysis with an Introduction to Proof, and Principles of Algebra. In 1985, Steven received the Excellence in Teaching Award at Aurora University. He and David, and their father, Dr. L. Clark Lay, are all distinguished mathematicians, and in 1989 they jointly received the Outstanding Alumnus award from their alma mater, Aurora University. In 2006, Steven was honored to receive the Excellence in Scholarship Award at Lee University. He is a member of the American Mathematical Society, the Mathematics Association of America, and the Association of Christians in the Mathematical Sciences. Judi J. McDonald joins the authorship team after working closely with David on the fourth edition. She holds a B.Sc. in Mathematics from the University of Alberta, and an M.A. and Ph.D. from the University of Wisconsin. She is currently a professor at Washington State University. She has been an educator and research mathematician since the early 90s. She has more than 35 publications in linear algebra research journals. Several undergraduate and graduate students have written projects or theses on linear algebra under Judi’s supervision. She has also worked with the mathematics outreach project Math Central http://mathcentral.uregina.ca/ and continues to be passionate about mathematics education and outreach. Judi has received three teaching awards: two Inspiring Teaching awards at the University of Regina, and the Thomas Lutz College of Arts and Sciences Teaching Award at Washington State University. She has been an active member of the International Linear Algebra Society and the Association for Women in Mathematics throughout her career and has also been a member of the Canadian Mathematical Society, the American Mathematical Society, the Mathematical Association of America, and the Society for Industrial and Applied Mathematics.
Contents Preface to the Third Edition, vii Preface to the Second Edition, ix Preface to the First Edition, xi Preliminaries, 1 Part 1: Preliminaries, 1 Part 2: Algebraic Structures, 17 Part I---Basic Linear Algebra, 33 1 Vector Spaces, 35 Vector Spaces, 35 Subspaces, 37 Direct Sums, 40 Spanning Sets and Linear Independence, 44 The Dimension of a Vector Space, 48 Ordered Bases and Coordinate Matrices, 51 The Row and Column Spaces of a Matrix, 52 The Complexification of a Real Vector Space, 53 Exercises, 55 2 Linear Transformations, 59 Linear Transformations, 59 The Kernel and Image of a Linear Transformation, 61 Isomorphisms, 62 The Rank Plus Nullity Theorem, 63 Linear Transformations from to , 64 Change of Basis Matrices, 65 The Matrix of a Linear Transformation, 66 Change of Bases for Linear Transformations, 68 Equivalence of Matrices, 68 Similarity of Matrices, 70 Similarity of Operators, 71 Invariant Subspaces and Reducing Pairs, 72 Projection Operators, 73 xiv Contents Topological Vector Spaces, 79 Linear Operators on , 82 Exercises, 83 3 The Isomorphism Theorems, 87 Quotient Spaces, 87 The Universal Property of Quotients and the First Isomorphism Theorem, 90 Quotient Spaces, Complements and Codimension, 92 Additional Isomorphism Theorems, 93 Linear Functionals, 94 Dual Bases, 96 Reflexivity, 100 Annihilators, 101 Operator Adjoints, 104 Exercises, 106 4 Modules I: Basic Properties, 109 Motivation, 109 Modules, 109 Submodules, 111 Spanning Sets, 112 Linear Independence, 114 Torsion Elements, 115 Annihilators, 115 Free Modules, 116 Homomorphisms, 117 Quotient Modules, 117 The Correspondence and Isomorphism Theorems, 118 Direct Sums and Direct Summands, 119 Modules Are Not as Nice as Vector Spaces, 124 Exercises, 125 5 Modules II: Free and Noetherian Modules, 127 The Rank of a Free Module, 127 Free Modules and Epimorphisms, 132 Noetherian Modules, 132 The Hilbert Basis Theorem, 136 Exercises, 137
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值