『常学常新』吴恩达:AI时代,产品经理的黄金时代

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普AI工具测评AI效率提升AI行业洞察。关注我,AI之路不迷路,2025我们继续出发。

吴恩达老师的这篇文章我读了多遍。

不管你是不是产品经理,这篇文章都值得一读。

这篇主题为“Why AI Product Management is the Future”的文章最早发布在吴恩达老师的DeepLearning.AI公司官网的每周通讯“The Batch”中,发布日期为2025年1月15日,是该系列的第284期。


在互联网行业,有一种特殊的“牛马”叫产品经理,英文名Product Manager,简称PM。而在当前的AI时代,有一种特殊的产品经理,叫AI产品经理

在经济学理论中,有一种现象叫互补品效应。当两种商品互为补充时,一种商品价格下降会刺激另一种商品需求上升 —— 比如汽车价格下降会带动汽油需求暴涨。当前,AI正在让软件开发变得更快更便宜,这反过来会让那些能提供清晰产品规划的人才变得炙手可热。

插一句】这里吴恩达老师说的其实和Sam Altman提出的“AI时代,提问能力比智力更重要”殊途同归。

AI产品经理本质上就是个六边形战士。要了解AI技术、能把控迭代节奏,又要精通数据、适应不确定性。更重要的是,AI行业变化太快了,需要持续学习。

一些思考

蒸汽机让我们的身体走得更远,AI则让我们的思想走得更远。如果说蒸汽机延伸了我们的四肢,拓展了人类的物理边界,那么AI正在前所未有地拓展我们的认知边界。

未来,每个人都将与AI共事,无论你身处哪个行业。甚至是当下,我已经是每天使用AI工具的重度用户了。

AI时代,“定义需求”将变得越来越重要,这不仅仅适用于AI产品经理。如果说AI负责“解决问题”,那么我们就是负责“提出问题”。就像Sam Altman所说,提问能力比智力更重要。

AI时代,人人都是产品经理,人人都可以是产品经理


吴恩达:AI 时代,产品经理的黄金时代

朋友们,

如今,编写软件,特别是构建原型,正变得越来越容易、成本也越来越低。这一趋势将使得那些能够“拍板”构建什么的人才变得炙手可热。由此看来,AI 产品经理的前景可谓一片光明!(Writing software, especially prototypes, is becoming cheaper. This will lead to increased demand for people who can decide what to build. AI Product Management has a bright future!

软件开发通常由团队协作完成,其中产品经理 (PM) 负责确定产品的方向和功能(比如面向哪些用户群体,实现哪些具体功能),而软件开发人员 则负责编写代码,将产品构想变为现实。(Software is often written by teams that comprise Product Managers (PMs), who decide what to build (such as what features to implement for what users) and Software Developers, who write the code to build the product.

经济学原理告诉我们,当两种商品互为补充时——比如汽车(内燃机汽车)和汽油——其中一种商品价格下降,会导致对另一种商品的需求上升。举个例子,当汽车价格变得亲民,更多的人选择购买,从而带动了汽油需求的增长。类似的现象也将出现在软件行业。(Economics shows that when two goods are complements — such as cars (with internal-combustion engines) and gasoline — falling prices in one leads to higher demand for the other. For example, as cars became cheaper, more people bought them, which led to increased demand for gas. Something similar will happen in software.

只要有了明确的需求文档,AI 就能让软件构建过程变得更快更便宜。因此,那些能够针对有价值的产品提出清晰、明确规划的人才,其市场需求将显著提升。(Given a clear specification for what to build, AI is making the building itself much faster and cheaper. This will significantly increase demand for people who can come up with clear specs for valuable things to build.

这正是我对产品管理,尤其是 AI 产品管理 的未来充满期待的原因。产品管理是一门致力于软件产品开发与管理的学科,而 AI 产品管理则是专注于 AI 软件产品开发与管理的学科。(This is why I’m excited about the future of Product Management, the discipline of developing and managing software products. I’m especially excited about the future of AI Product Management, the discipline of developing and managing AI software products.

许多公司的工程师与产品经理的比例,大概是 6:1 的样子(当然,这个比例在不同公司和行业之间差异很大,通常在 4:1 到 10:1 之间)。随着编程效率的提升,我认为,在团队总人数中,产品管理(以及设计工作)的占比将会上升。也许一部分工程师会开始涉足产品管理工作,但如果这部分工作仍然主要由专业的产品经理负责,那么市场对产品经理岗位的需求将会只增不减。(Many companies have an Engineer:PM ratio of, say, 6:1. (The ratio varies widely by company and industry, and anywhere from 4:1 to 10:1 is typical.) As coding becomes more efficient, I think teams will need more product management work (as well as design work) as a fraction of the total workforce. Perhaps engineers will step in to do some of this work, but if it remains the purview of specialized Product Managers, then the demand for these roles will grow.

然而,软件开发团队人员构成的这一转变尚未全速推进。阻碍这一转变的一个主要因素,尤其是在 AI 产品管理领域,是软件工程师作为技术人员,对 AI 的理解和接受速度远超产品经理。时至今日,大多数公司仍然难以找到既懂产品开发又懂 AI 的复合型人才,而且我认为这种人才短缺的现象还会加剧。(This change in the composition of software development teams is not yet moving forward at full speed. One major force slowing this shift, particularly in AI Product Management, is that Software Engineers, being technical, are understanding and embracing AI much faster than Product Managers. Even today, most companies have difficulty finding people who know how to develop products and also understand AI, and I expect this shortage to grow.

那么,AI 产品经理需要具备哪些能力呢?

不同于传统的软件产品管理,AI 产品管理需要一套独特的技能组合:

  • 深厚的 AI 技术功底: 产品经理需要了解哪些产品在技术上是可行的,还需要掌握 AI 项目的完整生命周期,包括数据采集、模型构建、监控和维护。(Technical proficiency in AI. PMs need to understand what products might be technically feasible to build. They also need to understand the lifecycle of AI projects, such as data collection, building, then monitoring, and maintenance of AI models. )

  • 迭代开发的把控能力: AI 开发比传统软件开发更具迭代性,过程中需要更多调整和优化,产品经理需要懂得如何管理这种迭代流程。(Iterative development. Because AI development is much more iterative than traditional software and requires more course corrections along the way, PMs need to understand how to manage such a process. )

  • 优秀的数据素养: AI 产品通常依赖数据进行学习,并且可以被设计成比传统软件产生更加丰富的数据,熟悉数据、利用数据是必须的技能。(Data proficiency. AI products often learn from data, and they can be designed to generate richer forms of data than traditional software. )

  • 应对不确定性的能力: 由于 AI 的性能往往难以预先准确判断,产品经理需要适应这种不确定性,并有策略地进行管理。(Skill in managing ambiguity. Because AI’s performance is hard to predict in advance, PMs need to be comfortable with this and have tactics to manage it. )

  • 持续学习的热情: AI 技术日新月异。与其他致力于有效利用该技术的人一样,产品经理需要不断学习、掌握最新的技术进展、产品理念,以及如何将它们融入用户的生活之中。(Ongoing learning. AI technology is advancing rapidly. PMs, like everyone else who aims to make best use of the technology, need to keep up with the latest technology advances, product ideas, and how they fit into users’ lives. )

最后,AI 产品经理还需要懂得如何确保 AI 技术的应用是负责任的(例如,何时需要设置“防护栏”以防止不良后果),还需要善于快速收集反馈,推动项目向前发展。此外,我越来越期待优秀的产品经理能够亲自动手构建产品原型。(Finally, AI Product Managers will need to know how to ensure that AI is implemented responsibly (for example, when we need to implement guardrails to prevent bad outcomes), and also be skilled at gathering feedback fast to keep projects moving. Increasingly, I also expect strong product managers to be able to build prototypes for themselves.

市场对优秀 AI 产品经理的需求将会非常巨大。除了 AI 产品管理这门学科自身的发展壮大之外,或许一些工程师最终也会承担更多产品管理的职责。(The demand for good AI Product Managers will be huge. In addition to growing AI Product Management as a discipline, perhaps some engineers will also end up doing more product management work.

我们可以创造的价值几乎是无限的。这是一个多么激动人心的创造时代!(The variety of valuable things we can build is nearly unlimited. What a great time to build!

与诸君共勉,

吴恩达(Keep learning, Andrew


最后附上这篇文章的原文链接:

https://www.deeplearning.ai/the-batch/issue-284/


精选推荐​​​​​​​


都读到这里了,点个赞鼓励一下吧,小手一赞,年薪百万!😊👍👍👍。关注我,AI之路不迷路,原创技术文章第一时间推送🤖。

小声哔哔:现在关注,你就是老粉了!

<think>嗯,用户之前问过激光雷达的用途,现在转向了深度学习机器学习学习路径。这可能意味着他们对技术领域有广泛的兴趣,或者正在考虑进入数据科学或AI领域。我需要确定他们的背景,是学生、转行者还是有其他目的。 首先,用户提到“新手如何学习”,所以需要提供从基础开始的指导。可能他们的主要需求是找到系统化的学习路线,避免在学习过程中感到迷茫。应该包括资源推荐、学习方法以及实践项目的重要性。 考虑到他们之前的问题关于激光雷达,可能对应用场景比较感兴趣,比如在自动驾驶或工业检测中的应用。所以在介绍学习路径时,可以结合这些实际应用案例,增强相关性。 需要区分机器学习深度学习,虽然深度学习是机器学习的子领域,但初学者可能会混淆两者的学习顺序。应该建议先掌握机器学习基础,再过渡到深度学习,这样有助于建立扎实的理论基础。 用户可能没有明确说明是否有编程基础,但学习这两个领域通常需要Python数学知识。因此,在回答中需要强调编程数学的重要性,并提供相应的学习资源。 另外,实践是关键。新手可能会陷入理论学习的泥潭,而缺乏实际项目经验。建议他们通过Kaggle竞赛或开源项目来应用所学知识,同时培养解决问题的能力。 还要注意学习路径的阶段性,分步骤引导,避免信息过载。比如先学Python数学,再学机器学习基础,接着是深度学习后是项目实战。同时,推荐社区论坛,帮助他们解决学习中的问题,保持学习动力。 后,可能用户担心学习难度大,需要鼓励他们保持耐心,持续实践,并参与社区交流。同时,提醒他们根据兴趣选择方向,比如计算机视觉、自然语言处理等,以保持学习的热情。</think>好的!对于深度学习机器学习新手学习路径需要结合**理论基础、工具实践****项目经验**。以下是一个分阶段的系统化学习指南,结合中文资源学习建议: --- ### **一、基础准备:数学 + 编程** #### 1. **数学基础** - **线性代数**:矩阵运算、向量空间(推荐《线性代数的本质》系列视频)。 - **概率与统计**:概率分布、贝叶斯定理、假设检验(可参考《统计学导论》)。 - **微积分**:导数、梯度、优化(重点理解梯度下降原理)。 *🔍 工具辅助*:如果数学薄弱,可用工具库(如NumPy、SymPy)边实践边补基础。 #### 2. **编程能力** - **Python**:掌握基础语法、数据结构(列表/字典/函数),推荐[廖雪峰Python教程](https://www.liaoxuefeng.com/wiki/1016959663602400)。 - **关键库**: - **NumPy**(数值计算)、**Pandas**(数据分析); - **Matplotlib/Seaborn**(数据可视化)。 *📌 目标*:能独立完成数据清洗、简单可视化分析。 --- ### **二、机器学习入门:理论与工具** #### 1. **经典算法理解** - **监督学习**:线性回归、逻辑回归、决策树、SVM、随机森林。 - **无监督学习**:K-Means、PCA、聚类评估。 - **模型评估**:交叉验证、ROC曲线、混淆矩阵、过拟合与正则化。 *📚 推荐书籍*: - 《机器学习》(周志华,西瓜书)——理论扎实,适合反复读; - 《Hands-On Machine Learning》(Scikit-Learn版)——代码实践友好。 #### 2. **工具实战** - **Scikit-Learn**:从调用API开始,理解参数调优(如GridSearchCV)。 - **项目练习**: - Kaggle入门赛(如泰坦尼克生存预测、房价预测); - 使用UCI数据集(如鸢尾花分类、手写数字识别)。 --- ### **三、深度学习进阶:框架与模型** #### 1. **深度学习基础** - **核心概念**:神经网络结构、激活函数、反向传播、损失函数。 - **框架选择**: - **PyTorch**(灵活,适合研究)或 **TensorFlow/Keras**(工程部署友好)。 *🎥 推荐课程*: - 吴恩达《深度学习专项课》(Coursera,中文字幕); - 李沐《动手学深度学习》(B站免费视频+代码)。 #### 2. **经典模型实践** - **计算机视觉**:CNN(LeNet、ResNet)、目标检测(YOLO)。 - **自然语言处理**:RNN、LSTM、Transformer。 - **实战工具**: - PyTorch Lightning(简化训练流程); - Hugging Face(快速调用预训练模型)。 #### 3. **调试技巧** - 学习使用TensorBoard或Weights & Biases可视化训练过程; - 掌握过拟合解决方法(数据增强、Dropout、早停法)。 --- ### **四、项目实战:从模仿到创新** #### 1. **复现经典项目** - 图像分类:CIFAR-10数据集训练ResNet; - 文本生成:用LSTM生成唐诗或新闻标题; - 目标检测:用YOLOv5训练自定义数据集(如检测交通标志)。 #### 2. **参与竞赛** - **Kaggle**:从Featured竞赛中选择感兴趣的主题(如预测、图像分割); - **阿里天池/AI Studio**:国内平台,中文社区支持更友好。 #### 3. **开源贡献** - 在GitHub上复现论文代码(如搜索“PyTorch implementation of XXX”); - 参与开源项目(如Hugging Face模型库的文档优化或Bug修复)。 --- ### **五、持续提升:理论与工程结合** #### 1. **深入理论** - 阅读经典论文(如AlexNet、Transformer、BERT),配合代码实现; - 学习《深度学习》(花书)中的数学推导。 #### 2. **工程化能力** - 模型部署:学习ONNX、TensorRT或Flask/Django构建API; - 性能优化:掌握模型剪枝、量化、蒸馏等轻量化技术。 #### 3. **领域聚焦** - **CV方向**:学习OpenCV、MMDetection; - **NLP方向**:深入Hugging Face库、Prompt Engineering; - **强化学习**:从Gym环境到PPO算法。 --- ### **六、学习资源推荐** #### 1. **中文社区** - **论坛**:知乎(关注李沐、邱锡鹏等大V)、CSDN(入门教程多); - **公众号**:AI科技评论、机器之心。 #### 2. **免费课程** - B站:跟李沐学AI、莫烦Python; - 百度AI Studio:提供免费GPU算力。 #### 3. **书籍** - 《机器学习实战:基于Scikit-Learn、KerasTensorFlow》 - 《Python深度学习(第2版)》 --- ### **七、避坑指南** 1. **不要盲目追新**:先掌握经典模型(如ResNet、BERT),再跟进前沿论文。 2. **代码 > 理论**:初期以跑通代码、理解流程为主,数学推导可逐步深入。 3. **学会提问**:遇到报错先查Stack Overflow、GitHub Issues,再向社区求助。 --- ### **总结** 新手学习的关键是**快速建立正反馈**: 1. 从工具(Python+框架)入手,先实现“能跑通代码”; 2. 通过项目理解理论(如反向传播),而非死磕公式; 3. 加入社群,避免闭门造车。保持耐心,半年可入门,1-2年能独立开发模型!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值