CAN源码解析(HMER:Counting-Aware Network for HandwrittenMathematical Expression Recognition)

CAN源码解析(HMER:Counting-Aware Network for HandwrittenMathematical Expression Recognition)

paper: https://arxiv.org/abs/2207.11463

GitHub: https://github.com/LBH1024/CAN

0 整体架构

CAN是一个基于encoder-decoder架构的模型。整体由3个组成部分构成

  • backbone (encoder)
  • MSCM (辅助任务head,其输出也作为CCAD的输入)
  • CCAD (decoder)

在这里插入图片描述

1 Encoder

1.1 输入

  • Images R B × C × H × W \mathbb{R}^{B\times C \times H \times W} RB×C×H×W
  • Image_masks R B × 1 × H × W \mathbb{R}^{B\times 1 \times H \times W} RB×1×H×W padding部分为0,图片区域为1
  • labels R B × L \mathbb{R}^{B\times L} RB×L, latex字符在字典中的索引,(label后加停止符EOS,有些实现还会加起始符) (在decoder模块中使用到)
  • labels mask. R B × L \mathbb{R}^{B\times L} RB×L padding部分为0,图片区域为1 (在计算loss中使用到中使用到)

1.2 输出

  • Cnn_features R B × C ′ × H 16 × W 16 \mathbb{R}^{B \times C' \times \frac{H}{16} \times \frac{W}{16} } RB×C×16H×16W
  • Counting_mask R B × C ′ × H 16 × W 16 \mathbb{R}^{B \times C' \times \frac{H}{16} \times \frac{W}{16} } RB×C×16H×16W 是输入的images mask间隔16采样得到 counting_mask = images_mask[:, :, ::self.ratio, ::self.ratio]

2 decoder

2.1 MSCM(Multi-Scale Counting Module)

    def forward(self, x, mask):
        """
        Args:
            x(tensor), cnn_feature, B, C',H//16, W//16 
            mask(tensor), counting_mask, B, 1, H//16, W//16
        """
        b, c, h, w = x.size()
        x = self.trans_layer(x)
        x = self.channel_att(x)
        x = self.pred_layer(x)
        if mask is not None:
            x = x * mask
        x = x.view(b, self.out_channel, -1)
        x1 = torch.sum(x, dim=-1)
        return x1, x.view(b, self.out_channel, h, w)

在这里插入图片描述

2.1.1 输入
  • Cnn_features R B × C ′ × H 16 × W 16 \mathbb{R}^{B \times C' \times \frac{H}{16} \times \frac{W}{16} } RB×C×16H×16W
  • Counting_mask R B × C ′ × H 16 × W 16 \mathbb{R}^{B \times C' \times \frac{H}{16} \times \frac{W}{16} } RB×C×16H×16W 是输入的images mask间隔16采样得到 counting_mask = images_mask[:, :, ::self.ratio, ::self.ratio]
2.1.2 输出
  • Counting_preds R B × C t o k e n \mathbb{R}^{B \times C_{token}} RB×Ctoken, C t o k e n C_{token} Ctoken是字典的长度

2.2 CCAD(Counting-Combined Attentional Decoder)

论文中的图片架构图如下

在这里插入图片描述

2.2.1 输入
  • Cnn_features R B × C ′ × H 16 × W 16 \mathbb{R}^{B \times C' \times \frac{H}{16} \times \frac{W}{16} } RB×C×16H×16W
  • Image_masks R B × 1 × H × W \mathbb{R}^{B\times 1 \times H \times W} RB×1×H×W padding部分为0,图片区域为1
  • labels R B × L \mathbb{R}^{B\times L} RB×L, latex字符在字典中的索引, L L L是序列长度(label后加停止符EOS,有些实现还会加起始符)
  • labels mask. R B × L \mathbb{R}^{B\times L} RB×L padding部分为0,图片区域为1 (用于loss的计算)
  • Counting_preds R B × C t o k e n \mathbb{R}^{B \times C_{token}} RB×Ctoken, C t o k e n C_{token} Ctoken是字典的长度(是上面MSCM的输出)
2.2.2 输出
  • word_probs R B × L × C t o k e n \mathbb{R}^{B \times L \times C_{token}} RB×L×Ctoken, C t o k e n C_{token} Ctoken是字典的长度, L L L是序列长度
  • (Optional) Word_alpha R B × H 16 × W 16 \mathbb{R}^{B \times \frac{H}{16} \times \frac{W}{16} } RB×16H×16W, attention map (用于可视化)
2.2.3 CCAD内部处理流程详细解析

内部的详细pipeline如下

在这里插入图片描述

3 其它

3.1 位置编码怎么做的

位置编码用了常规的正余弦编码

class PositionEmbeddingSine(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """
    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, x, mask):
        """
        Args:
            x: input features with shape [batch_size, channel, height, width]
            mask: mask with shape [batch_size, 1, height, width]
        """
        y_embed = mask.cumsum(1, dtype=torch.float32)  # [batch_size, 1, height, width]
        x_embed = mask.cumsum(2, dtype=torch.float32)  # [batch_size, 1, height, width]
        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
        
        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)   
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t  # pos_x.shape: [batch_size, 1, height, width, num_pos_feats]
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)  # pos_x.shape: [batch_size, 1, height, width, num_pos_feats]
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos  # [batch_size, num_pos_feats*2, height, width]

3.2 损失函数

整体损失函数包括两个部分,其一是计数模块的smooth L1损失。其二是序列预测的交叉熵损失
L = L c l s + L c o u n t i n g , \mathcal{L} = \mathcal{L}_{cls} + \mathcal{L}_{counting}, L=Lcls+Lcounting,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值