softmax的数值溢出问题

softmax是deep learning常用的一个操作,虽然有很多现成的包可以调,但在某些场景下需要自己实现。本文简单探讨一下softmax可能会出现的数值稳定性问题

  • 解决上溢出问题

Softmax ( x i ) = exp ⁡ ( x i ) ∑ j = 1 N exp ⁡ ( x j ) = exp ⁡ ( x i ) / exp ⁡ ( x m a x ) ∑ j = 1 N exp ⁡ ( x j ) / exp ⁡ ( x m a x ) = exp ⁡ ( x i − x m a x ) ∑ j = 1 N exp ⁡ ( x j − x m a x ) (1) \begin{aligned} \text{Softmax}(x_{i}) &= \frac{\exp(x_i) }{ \sum_{j=1}^{N} \exp(x_j)} \\ &= \frac{\exp(x_i) / \exp{(x_{max})}}{ \sum_{j=1}^{N} \exp(x_j) / \exp{(x_{max})} } \\ &= \frac{\exp(x_i - x_{max})}{ \sum_{j=1}^{N} \exp(x_j - x_{max})} \end{aligned} \tag{1} Softmax(xi)=j=1Nexp(xj)exp(xi)=j=1Nexp(xj)/exp(xmax)exp(xi)/exp(xmax)=j=1Nexp(xjxmax)exp(xixmax)(1)

  • x m a x x_{max} xmax很大时,分子可能出现 0 0 0,当和 log ⁡ \log log联用时(如计算cross-entropy损失),会出现 l o g ( 0 ) log(0) log(0),此时应当进行如下变形。

    log ⁡ s o f t m a x ( x i ) = log ⁡ ( exp ⁡ ( x i − x m a x ) ∑ j = 1 N exp ⁡ ( x j − x m a x ) ) = log ⁡ exp ⁡ ( x i − x m a x ) − log ⁡ ∑ j = 1 N exp ⁡ ( x j − x m a x ) = ( x i − x m a x ) − log ⁡ ∑ j = 1 N exp ⁡ ( x j − x m a x ) ⏟ > 1 (2) \begin{aligned} \log \mathrm{softmax}(x_i) &= \log \Bigr( {\frac{\exp(x_i - x_{max})}{ \sum_{j=1}^{N} \exp(x_j - x_{max})}} \Bigr) \\ & = \log \exp(x_i - x_{max}) - \log { \sum_{j=1}^{N} \exp(x_j - x_{max}) } \\ & = (x_i - x_{max}) - \log { \underbrace{\sum_{j=1}^{N} \exp(x_j - x_{max}) }_{\gt 1} } \end{aligned} \tag{2} logsoftmax(xi)=log(j=1Nexp(xjxmax)exp(xixmax))=logexp(xixmax)logj=1Nexp(xjxmax)=(xixmax)log>1 j=1Nexp(xjxmax)(2)

  • 25
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值