- 博客(72)
- 收藏
- 关注
原创 软件学报 期刊投稿流程记录
2022-06-27 领域编委初审。2022-08-04 责任编委初审。2022-11-21 责任编委复审。2022-12-22 复审部分审回。2023-02-03 责任编委复审。2022-11-03 修改后再审。2023-01-09 复审已审回。2022-11-18 已修回。2023-02-03 已修回。2023-03-08 已录用。2022-06-15 投稿。2022-09-20 外审。2022-11-03 定稿。2023-01-20 定稿。2023-03-07 定稿。
2023-03-24 16:01:24 1600
原创 jquery报错——TypeError: V[g].exec is not a function
问题描述 在当前页面添加一个垂直手风琴特效,结果加载页面时,无法触发元素的click事件。发现问题 在检查代码逻辑无明显错误后,利用浏览器检查功能发现了问题。在点击元素后,浏览器报错。解决方案 在百度之后产生了灵感,就是jq的版本可能与页面调用的某些库冲突或者jq调用的函数可能被改写覆盖。 我突然意识到,之前页面为了扩展解析HTML模版改写的parseHTMLTemplate。而恰好Object.prototype.parseHTMLTemplate = function (func
2021-08-02 11:24:40 1403
原创 学习笔记——pytorch1.9.0官方文档快速入门(三)
目录参考笔记链接transforms介绍ToTensor()Lambda Transforms参考官方文档——Transforms转换运行环境:google colab笔记链接学习笔记——pytorch1.9.0官方文档快速入门(一)学习笔记——pytorch1.9.0官方文档快速入门(二)学习笔记——pytorch1.9.0官方文档快速入门(三)学习笔记——pytorch1.9.0官方文档快速入门(四)学习笔记——pytorch1.9.0官方文档快速入门(五)学习笔记——pytorc
2021-07-26 15:06:25 462
原创 学习笔记——pytorch1.9.0官方文档快速入门(二)
目录参考笔记链接Datasets & Dataloaders介绍加载数据集可视化数据集自定义数据集__init____len____getitem__使用Dataloaders准备训练数据遍历DAtaloader参考官方文档——Datasets & Dataloaders运行环境:google colab笔记链接学习笔记——pytorch1.9.0官方文档快速入门(一)学习笔记——pytorch1.9.0官方文档快速入门(二)学习笔记——pytorch1.9.0官方文档快速入
2021-07-26 14:49:22 569
原创 学习笔记——pytorch1.9.0官方文档快速入门(一)
目录参考笔记链接Tensor介绍初始化张量的方法数据直接转换numpy数组转换其他张量转换使用随机值或常量值张量属性张量操作索引和切片拼接算术运算单元素张量In-place操作tensor与numpytensor转换为numpy arraynumpy array转换为tensor参考官方文档——张量Tensor运行环境:google colab笔记链接学习笔记——pytorch1.9.0官方文档快速入门(一)学习笔记——pytorch1.9.0官方文档快速入门(二)学习笔记——pytorch
2021-07-26 13:57:22 1779 1
原创 构建AIDA-CoNLL数据集操作指南
操作指南介绍操作流程下载基础文件构建CoNLL2003构建AIDA-CoNLL参考介绍 AIDA-CoNLL也称AIDA CoNLL-YAGO,是实体消歧和实体链接常用的公共数据集,它发布于EMNLP2011的论文Robust Disambiguation of Named Entities in Text。AIDA-CoNLL包含了实体分配给为原始的CoNLL 2003实体识别任务注释的命名实体的表述(mention)。实体由YAGO2实体名称、Wikipedia URL或Freebase mid确
2021-07-12 09:36:01 1879 1
原创 集成学习——bagging原理及分析
bagging原理 与投票法不同的是,Bagging不仅仅集成模型最后的预测结果,同时采用一定策略来影响基模型训练,保证基模型可以服从一定的假设。在上一章中我们提到,希望各个模型之间具有较大的差异性,而在实际操作中的模型却往往是同质的,因此一个简单的思路是通过不同的采样增加模型的差异性。 Bagging的核心在于自助采样(bootstrap)这一概念,即有放回的从数据集中进行采样,也就是说,同样的一个样本可能被多次进行采样。一个自助采样的小例子是我们希望估计全国所有人口年龄的平均值,那么我们可以在全
2021-04-17 23:38:58 1428 1
原创 集成学习结合策略——投票法
初识投票法的一点联想 其实第一次遇见集成学习中的投票法时候,会不由自主联系到leetcode 169. 多数元素和leetcode 229. 求众数 II中利用摩尔投票法求解问题。摩尔投票的基本思路如下:找出一组数字序列中出现次数大于总数1/2的数字(并且假设这个数字一定存在)。显然这个数字只可能有一个。摩尔投票算法是基于这个事实:每次从序列里选择两个不相同的数字删除掉(或称为“抵消”),最后剩下一个数字或几个相同的数字,就是出现次数大于总数一半的那个。作者:喝七喜链接:https://www
2021-04-14 22:16:33 3199
原创 公式推导概率生成模型(更新~)
基于概率的分类模型朴素贝叶斯线性判别分析logistic regression决策树支持向量机参考Datawhale集成学习项目地址李宏毅ML20课程主页
2021-03-27 21:54:49 1035 1
原创 超参数调优
参数与超参数 以最基本的线性回归模型为例,说明参数与超参数的区别。我们使用线性回归模型预测数据,通过MSE均方误差评估模型优劣,利用随机梯度下降寻找最优模型。其中,通过MSE调整的WWW正是我们所熟知的参数,而随机梯度下降中的步长η\etaη是我们心心念的超参数。因此,类似于参数WWW一样,使用最小二乘法或者梯度下降法等最优化算法优化出来的数我们称为参数,类似于η\etaη一样,我们无法使用最小二乘法或者梯度下降法等最优化算法优化出来的数我们称为超参数。模型参数是模型内部的配置变量,其值可以根据数据进
2021-03-24 22:16:56 249
原创 偏差方差理论解析
正在写训练均方误差与测试均方误差:在回归中,我们最常用的评价指标为均方误差,即: ,其中是样本 应用建立的模型 预测的结果。如果我们所用的数据是训练集上的数据,那么这个误差为训练均方误差,如果我们使用测试集的数据计算的均方误差,我们称为测试均方误差。一般而言,我们并不关心模型在训练集上的训练均方误差,我们关心的是模型面对未知的样本集,即测试集上的测试误差,我们的目标是使得我们建立的模型在测试集上的测试误差最小。那我们如何选择一个测试误差最小的模型呢?这是个棘手的问题,因为在模型建立阶段,我们是
2021-03-22 22:23:15 388
原创 李宏毅机器学习特训营——regression课程笔记
回归应用 概括来说,回归的过程就是向某一函数f(X)输入若干数据X,输出某一标量。回归可用于股票预测、自动驾驶、推荐系统等,如下图所示: 接下来,我们将用大名鼎鼎的宝可梦预测实例梳理回归模型构建的全流程,或者说如何玩转机器学习? 注:我对Pokémon不是很了解,因此,我可能直接用字母代替里面的很多细节,比如特征值的含义。回归举例:宝可梦预测实例说明 要求预测宝可梦进化后的CP值。这里我们可以向模型输入不同的特征,包括但不限于xsx_sxs、xhpx_{hp}xhp、xwx_wxw
2021-03-16 21:09:26 692 1
原创 举例梳理机器学习三大基本任务
前言 参考Datawhale集成学习给出的思路。机器学习的“左膀右臂”——模型和数据,我们无非是应用模型来分析数据规律,以期望预测数据。在机器学习语境下,数据集通常表示为一组向量,每条数据(样本)就是该组向量中的一个向量。我们用xix_ixi来表示一个样本,其中i=1,2,3,...,Ni=1,2,3,...,Ni=1,2,3,...,N 导入包# 引入相关科学计算包import numpy as npimport pandas as pdimport matplotlib.pyplot
2021-03-15 22:01:46 546 1
原创 记一次小白调参baseline——NLP中文预训练模型泛化能力比赛
目的 前情提要 根据Datawhale大佬们提供的baseline训练模型以及优化方向,对baseline进行改进以期提高分数。对于小白本白来说,very very hard,特此记录过程以鞭策自己,目前仍在艰难探索ing~再次感谢大佬们的指点!背景个人配置本机显卡:RTX3070;目前租用两块3090试一试水;以及第一次调baseline的小白~赛题要求赛事信息:天池->全球人工智能技术创新大赛【热身赛二】Datawhale提供的baseline(特别感谢~):地
2021-02-26 02:27:40 1716 2
原创 踩坑记录——记一次训练提交baseline全过程
目录目的背景个人配置赛题要求本机跑通Baselinepytorch配置准备环节添加transformers和sklearn数据文件及bert配置模型训练过程数据准备训练更改batch_size适配主机生成结果打包预测结果Docker提交Docker安装本机Docker推送走通的路比赛提交致谢参考目的 根据Datawhale大佬们提供的baseline训练模型,并通过docker的方式提交到天池比赛,获得自己的分数。对于新手来说,并没有看起来那么轻松,特此记录踩坑历程。感谢老师们的指点!背景个人配置
2021-02-19 03:53:36 2055 2
原创 学习整理自用——计算机基础路径
实验工具 任意一门语言即可,最好是c++/java(用于日后课程的实践环节)数据结构/算法 书:可以看看《算法第四版》(java写的),讲的很清晰(没有动态规划的内容,可以去算法导论看一看专门章节) 课:书的作者授课,也就是大名鼎鼎的普林斯顿算法课(coursera打开太慢可以找b站)Princeton University 丨 Algorithms Part 1Princeton University 丨 Algorithms Part 2注:不习惯英文授课直接看书即可,这部分主
2021-02-14 17:04:06 403
原创 PaddlePaddle入门实践——十二生肖分类
十二生肖分类任务要求图像分类实现思路图像分类原理数据准备解压数据集数据标注数据集定义模型开发模型训练优化模型评估参考任务要求 找到一个最优算法,让机器能够分清每个属相动物的照片,这是一个基于图像的分类任务。图像分类实现思路图像分类原理数据准备解压数据集 我们将网上获取的数据集以压缩包的方式上传到aistudio数据集中,并加载到我们的项目内。在使用之前我们进行数据集压缩包的一个解压(十二生肖数据集)!unzip -q -o <压缩包路径>数据标注 数据集结构:
2021-02-07 19:48:38 1217 1
原创 PaddlePaddle入门实践——初识卷积神经网络
CNN基础介绍卷积操作单通道卷积多通道卷积多通道输出Batch池化paddingLeNet-5实践——手写数字识别 在我上一篇写的总结(PaddlePaddle入门实践——手写数字识别)中,我们采用了单隐层、线性变换的全连接神经网络模型来实现功能,本次总结我们将继续着眼于手写数字识别,所不同的是,我们会使用CNN的经典结构LeNet-5来达成目的。数据格式(image,label) Lenet是Yann LeCun等人在1998年提出的卷积神经网络结构,它的提出定义了CNN的基本结
2021-02-07 16:28:46 2245 4
原创 PaddlePaddle入门实践——手写数字识别
任务要求 能够识别手写数字0~9的图像,具体来说,将手写数字的灰度图像(28像素 x 28像素)划分到10个类别中(0 ~ 9)。要求使用PaddlePaddle框架实现模型。数据集及环境数据集来源: ML领域经典数据集MNIST,包含60,000 张训练图像和 10,000 张测试图像数据说明:数据分为图片和标签,图片是28*28的像素矩阵,标签为0 ~ 9共10个数字运行环境:PaddlePaddle2.0 + cuda11.1 + pycharm Tips:PaddlePadd
2021-02-04 23:03:32 4236 2
原创 Win10+CUDA11.1+Pycharm+RTX3070安装PaddlePaddle2.0
写在前面背景:学一下飞桨的课程,需要配paddle环境收获:在经历了配置pytorch的折磨后,这次配置除了在下载cuDNN遇到了少许波折,其他部分一次通过!系统配置:WIN10专业版 64位+RTX3070安装环境:Anaconda+Pycharm+Paddle(GPU版)+Cuda+cuDNN Tips:这次的配置方法基本源于之前配置pytorch的经验,详情可以移步到我写的pytorch配置总结,那里有一些类似的报错解决方案,希望能给大家一些启发。安装cuDNN部分,可以直接参考飞
2021-02-02 23:34:20 2506 4
原创 机器学习高等数学基础——多元微分总结
文章目录多元微分求偏导多元函数相关概念n维空间二元函数求偏导数方向导数求梯度一阶偏导求Jacobian矩阵二阶偏导求Hessian矩阵多元函数求极值函数的极值与最值的概念最优性条件无条件极值条件极值(拉格朗日乘子法)基于梯度的优化方法Taylor公式梯度下降法牛顿迭代法牛顿迭代法与梯度下降法比较参考多元微分求偏导多元函数相关概念n维空间 设nnn为取定的一个正整数,我们用RnR^nRn表示nnn元有序实数组(x1,x2,...,xn)(x_1,x_2,...,x_n)(x1,x2,...,xn
2021-01-16 16:11:46 809
原创 人工智能学习笔记:基本遗传算法及其改进算法
文章目录1 引言2 基本思想及发展历史3 基本遗传算法详细步骤3.1 编码3.2 初始群体设定3.3 设计适应度函数3.4 遗传操作3.4.1 选择3.4.2 交叉3.4.3 变异4 基本遗传算法总结5 遗传算法改进5.1 双倍体遗传算法5.2 双种群遗传算法5.3 自适应遗传算法6 参考文献1 引言 本次学习报告主要介绍基本遗传算法的详细过程以及三种遗传算法的改进算法,旨在回顾和整理这一学期习得的部分知识。在撰写报告的过程中,会在其中增加一些个人的思考,这些思考主要基于过去所学的知识,目的在于寻找知
2020-12-26 23:00:29 18086 2
原创 python爬虫——requests状态码418
问题描述 使用requests库爬取某个豆瓣电影评论,status_code码为418 根据官方文档显示,status_code为200时表示get成功。查了一下官方github的issue(像“愉快地讨论”问题)以及其他资料,发现418就是爬取的网站有反爬取机制,然后我就被KO了~解决方案 方法很easy~就是添加请求header的UserAgent防止被反爬虫识别。获取本机UserAgent信息,由于我的浏览器是Chrome,直接在浏览器地址栏添加chrome://version/即可查
2020-11-09 16:12:54 5453 2
原创 分治法刷题总结
写在前面 分治法简单理解就是分而治之,将一个复杂的问题通过一定的方式分解成若干个类似的小问题。其实,从字里行间便能体会到递归的含义。没错,本质上来说,我们还是通过分治法求解去体会递归的魅力。至少接下来的三道题,我是这样做的~~ 前排提醒,一开始遇到递归的问题,私以为不要过于追求细节,这样很容易迷失在递归过程中,造成自我怀疑。有一定基础的可以自己画棵树体会过程,或者直接翻题解找到类似的图也可。重要的是体会思想,剩下的就是重复练习。53.最大自序和题目描述 给定一个整数数组 nums ,找到一
2020-08-19 22:51:08 316
原创 hexo报错:TypeError [ERR_INVALID_URL]: Invalid URL
报错信息 上传md格式的文章时报错,信息如下: 后面紧接着一大堆node_modules的报错信息,就不展示了,大同小异~ 注:报错因人而异,切勿人云亦云解决思路 现在开始排查node版本问题,可能是版本过高,需要退回12。node -v之后发现自己版本12.14。显然不是此问题可能是插件升级后有某些bug,而且确实有很多node_modules的报错信息。可以删除node_modules,把你没出错的package.json和package-lock.json复制到当前
2020-08-16 12:26:55 11565 2
原创 SSH简便远程登录+通过SSH从服务器下载文件
写在前面 项目需要从服务器下载源码,记录下来自用。SSH简介 SSH 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定;SSH 为建立在应用层基础上的安全协议。SSH 是较可靠,专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。SSH最初是UNIX系统上的一个程序,后来又迅速扩展到其他操作平台。SSH在正确使用时可弥补网络中的漏洞。SSH客户端适用于多种平台。几乎所有UNI
2020-08-15 09:20:10 3121
原创 西瓜书笔记:第3章·线性模型
写在前面个人情况:数学基础 -> 考研数学一编程基础 -> 过去偏向应用开发,任务需要会兼顾前后端,nlp相关知之甚少整体情况 -> 小白一枚~阅读目的 -> 初次阅读重点在于了解理论模型构建过程RHe 原意是通过项目推动理论学习,不过基于零基础点NLP的技能树显然是有些不自量力。在学习某入门文本分类实践中,遇到了一个感兴趣的名词——SVM支持向量机。随后找到西瓜书略读相关理论,在6.4软间隔与正则化和6.6核方法分别遇到了对率损失和线性判别分析两个概念,它们
2020-08-13 03:56:47 340
原创 关于闭包的学习笔记
写在前面 终于有学上了,开始回炉重造js基础,第一站就是魂牵梦绕的闭包~冴羽大大的文章帮了大忙,看完一套醍醐灌顶。也是理解了为什么实际应用场景不推荐首先考虑闭包。 实际上它只是一个计算机科学现象,它并不神秘。以下是js大部头原文:This combination of a function object and a scope (a set of variable bindings) in which the function’s variables are resolved is called
2020-05-31 23:07:22 158
原创 151. 翻转字符串里的单词
题目链接题目描述:给定一个字符串,逐个翻转字符串中的每个单词。示例 1:输入: “the sky is blue”输出: “blue is sky the”示例 2:输入: " hello world! "输出: “world! hello”解释: 输入字符串可以在前面或者后面包含多余的空格,但是反转后的字符不能包括。示例 3:输入: “a good exa...
2020-04-11 00:31:46 262
原创 剑指offer题解——13. 机器人的运动范围
题目链接题目描述:地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请...
2020-04-09 00:45:20 152
原创 leetcode题解——面试题 01.07. 旋转矩阵
题目链接题目描述:给你一幅由 N × N 矩阵表示的图像,其中每个像素的大小为 4 字节。请你设计一种算法,将图像旋转 90 度。不占用额外内存空间能否做到?示例 1:给定 matrix =[[1,2,3],[4,5,6],[7,8,9]],原地旋转输入矩阵,使其变为:[[7,4,1],[8,5,2],[9,6,3]]示例 2:给定 matrix =[...
2020-04-07 00:54:12 213
原创 leetcode题解——42. 接雨水
题目链接题目描述:给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。示例:输入: [0,1,0,2,1,0,1,3,2,1,2,1]输出: 6暴力 暴力方法比较容易思考,即按列计算当前列能装多少雨水。找到当前列的左端最大高度curMaxLeft和右端最大高度curMaxRight,比较出两端最大高度的最小值,再与当前列的高度进...
2020-04-04 13:14:31 205
原创 Vue踩坑之vue-router挂载页面失败
问题描述系统: macOS Catalina 10.15.4背景: 设计嵌套路由问题: vue-router挂载页面失败 这是本人遇到的情况,仅供参考~ Tips:可直接看问题解决~问题解决 设计嵌套路由,发现挂载不上页面。如下解决方案:App.vue 检查App.vue文件中是否有<router-view />标签,若无,添加上。<templa...
2020-04-04 11:18:29 18900 2
原创 leetcode题解——8. 字符串转换整数 (atoi)
题目链接题目描述:请你来实现一个 atoi函数,使其能将字符串转换成整数。首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止。接下来的转化规则如下:如果第一个非空字符为正或者负号时,则将该符号与之后面尽可能多的连续数字字符组合起来,形成一个有符号整数。假如第一个非空字符是数字,则直接将其与之后连续的数字字符组合起来,形成一个整数。该字符串在有效的整数部分之后...
2020-04-03 11:52:46 143
原创 leetcode题解——289. 生命游戏
题目链接题目描述:根据 百度百科 ,生命游戏,简称为生命,是英国数学家约翰·何顿·康威在 1970 年发明的细胞自动机。给定一个包含 m × n 个格子的面板,每一个格子都可以看成是一个细胞。每个细胞都具有一个初始状态:1 即为活细胞(live),或 0 即为死细胞(dead)。每个细胞与其八个相邻位置(水平,垂直,对角线)的细胞都遵循以下四条生存定律:如果活细胞周围八个位置的活细胞数少...
2020-04-02 09:57:00 450
原创 leetcode题解——662. 二叉树最大宽度
题目链接题目描述:给定一个二叉树,编写一个函数来获取这个树的最大宽度。树的宽度是所有层中的最大宽度。这个二叉树与满二叉树(full binary tree)结构相同,但一些节点为空。每一层的宽度被定义为两个端点(该层最左和最右的非空节点,两端点间的null节点也计入长度)之间的长度。示例1:示例2:示例3:示例4:BFS 题目提示了我们满二叉树的结构,那让我们来回顾完...
2020-03-30 12:37:14 399
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人