线性回归 逻辑回归 神经网络之间的关系
小蛋白是我的最爱
2021-03-04 11:24:33
46
收藏
分类专栏:
机器学习
版权声明:本文为博主原创文章,遵循
CC 4.0 BY-SA
版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/weixin_40823740/article/details/114364327
版权
点赞
评论
分享
x
海报分享
扫一扫,分享海报
收藏
打赏
打赏
小蛋白是我的最爱
你的鼓励将是我创作的最大动力
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
精通数据科学:从
线性
回归
到深度学习
04-10
<p> </p><p> 数据科学是一门内涵很广的学科,它涉及到统计分析、机器学习以及计算机科学三方面的知识和技能。本课程将深入浅出、全面系统地介绍了这门学科的内容。通过这门课程,同学可以了解并熟悉如下的开源工具:scikit-learn、statsmodels、TensorFlow、Pyspark等。 </p> <p> 本课程分为4个部分,18个章节。 </p> <p> · 第一部分是最初的3章,主要介绍数据科学想要解决的问题、常用的IT工具Python以及这门学科所涉及的数学基础。 </p> <p> · 第二部分是第4-7章,主要讨论数据模型,主要包含三方面的内容:一是统计中最经典的
线性
回归
和
逻辑
回归
模型;二是计算机估算模型参数的随机梯度下降法,这是模型工程实现的基础;三是来自计量经济学的启示,主要涉及特征提取的方法以及模型的稳定性。 </p> <p> · 第三部分是接下来的8-15章,主要讨论算法模型,也就是机器学习领域比较经典的模型。这三章依次讨论了监督式学习、生成式模型以及非监督式学习。 </p> <p> · 第四部分将覆盖目前数据科学最前沿的两个领域分别是大数据和人工智能。具体来说,第11章将介绍大数据中很重要的分布式机器学习,而最后两章将讨论人工智能领域的
神经网络
和深度学习。 </p>
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
相关推荐
线性
回归
,
逻辑
回归
与
神经网络
原理推导
11-19
线性
回归
,
逻辑
回归
与
神经网络
原理推导:包括以下几点内容:1.
线性
回归
的定义及求解方法的推导,
线性
回归
与最小二乘
关系
,
线性
回归
显著性判断;2
逻辑
回归
的定义,及递推公式的推导,
逻辑
回归
与
神经网络
的
关系
,softmax
回归
;3多元
回归
分析概述;4
神经网络
反向传播
关系
的推导,举例说明反向传播过程。
神经网络
为什么优于
逻辑
回归
_什么时候以及为什么基于树的模型通常优于
神经网络
...
weixin_26640663的博客
09-17
295
神经网络
为什么优于
逻辑
回归
Neural networks are often regarded as the holy grail, all-knowing, solution-to-everything of machine learning, primarily because they are complex. Tree-based methods, on the other hand, a...
机器学习之
线性
回归
、
逻辑
回归
算法、
神经网络
-学习简述
我爱学习 学习使我快乐
06-18
227
参考吴恩达大佬机器学习课程:
线性
回归
算法、
逻辑
回归
算法以及
神经网络
的简述总结
线性
回归
与
逻辑
回归
有什么区别 ?——
神经网络
入门
明朗月,潇水寒
04-28
417
在谈
线性
回归
与
逻辑
回归
前,我们先聊聊什么是
回归
吧? 我们可以认为数据样本的所有数据都是具有一定
关系
的,其符合一定的分布规律。或者说我们可以将数据想象成各种曲线。而
回归
的作用就是确定这些曲线。所以我们可以根据这些确定的曲线,去预测一些我们还不知道。 所以我们常说:
回归
就是一种拟合数据的方法。 ...
机器学习个人笔记——(六)
神经网络
(1)从
线性
回归
到
神经网络
简单直观分析
weixin_42582355的博客
08-25
222
神经网络
一、
线性
回归
与
神经网络
单层单个输出多个输出多层二、
神经网络
原理三、激活函数 一、
线性
回归
与
神经网络
神经网络
是一种模拟人脑的
神经网络
以期能够实现类人工智能的机器学习技术。 单层 单个输出 假设现需要预测房屋的出售价格,房屋通过以下特征,面积(x1x_{1}x1)空气指数(x2x_{2}x2),交通指数(x3x_{3}x3),最终输出价格(yyy) 面积(x1x_{1}x1) 空气指数(x2x_{2}x2) 交通指数(x3x_{3}x3) 价格(yyy) 100 25 40
机器学习/CNN系列小问题(1):
逻辑
回归
和
神经网络
之间
有什么
关系
?
tina的博客
05-31
1万+
本文讨论的关键词:Logistic Regression(
逻辑
回归
)、Neural Networks(
神经网络
)之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的models,从来没有放在一起观察过,最近通过阅读网络资料,才发现,原来LR和NN
之间
是有一定的联系的,了解它们
之间
的联系后,可以更好地理解Logistic Regression(
逻辑
回归
)和Neural
机器学习算法基础
12-18
30个小时知识无盲区课程,覆盖十多个行业应用。
机器学习&深度学习系统实战!
06-07
<p> <span> </span> </p> <p> 数学原理推导与案例实战紧密结合,由机器学习经典算法过度到深度学习的世界,结合深度学习两大主流框架Caffe与Tensorflow,选择经典项目实战人脸检测与验证码识别。原理推导,形象解读,案例实战缺一不可!具体课程内容涉及
回归
算法原理推导、决策树与随机森林、实战样本不均衡数据解决方案、支持向量机、Xgboost集成算法、
神经网络
基础、
神经网络
整体架构、卷积
神经网络
、深度学习框架--Tensorflow实战、案例实战--验证码识别、案例实战--人脸检测。 专属会员卡优惠链接:http://edu.csdn.net/lecturer/1079 </p>
线性
回归
,
逻辑
回归
,
神经网络
,SVM的总结
angbao4913的博客
12-16
243
目录
线性
回归
,
逻辑
回归
,
神经网络
,SVM的总结
线性
回归
,
逻辑
回归
,
神经网络
,SVM的总结 详细的学习笔记. markdown的公式编辑手册.
回归
的含义:
回归
就是指根据之前的数据预测一个准确的输出值. 分类的含义: 分类就是预测离散的输出值, 比如男生为1, 女生为0(0/1离散输出问题). 机器...
机器学习方法简介(1)--
线性
回归
、
逻辑
回归
、
神经网络
、支持向量机
gan785160627的博客
07-31
2581
机器学习方法就是计算机根据已有的数据, 得出某个模型,然后利用此模型预测未来的一种方法。 机器学习的一个主要目的就是把人类思考归纳经验的过程转化为计算机通过对数据的处理计算得出模型的过程。 1.
回归
算法
回归
算法包括
线性
回归
和
逻辑
回归
线性
回归
使用“最小二乘法”来求解,“最小二乘法”的思想是这样的,假设我们拟合出的直线代表数据的真实值,而观测到的数据代表拥有误差的值。为了尽可能减小误差的影...
机器学习——
线性
回归
、
逻辑
回归
、
神经网络
weixin_43889586的博客
04-06
213
线性
回归
线性
回归
是利用数理统计中
回归
分析,来确定两种或两种以上变量间相互依赖的定量
关系
的一种统计分析方法,运用十分广泛。其表达形式为y = w’x+e,e为误差服从均值为0的正态分布。 如果
回归
方程只包含一个因变量,则被成为一元
线性
回归
分析(这个我们在中学阶段接触过),含两个以上因变量则被称为多元
线性
回归
分析。 ...
线性
回归
、
逻辑
斯蒂
回归
、
神经网络
的区别
YG的博客
04-23
481
主要记一下
逻辑
斯蒂和
神经网络
的区别吧
Pytorch 基础——实现
线性
回归
、
逻辑
回归
和卷积
神经网络
Chris Blog
03-27
575
线性
回归
1 步骤 构建一个类,叫做 LinearRegression 在这个类中定义模型 计算 MSE 均方误差损失函数 定义优化器 反向传播 预测 举个例子,我们有个汽车公司,如果车价格越低低,我们可以卖更多的车。 car_price_np = np.array([3,4,5,6,7,8,9], dtype=np.float32).reshape(-1,1) car_price_tenso...
机器学习简介之基础理论-
线性
回归
、
逻辑
回归
、
神经网络
喜欢打酱油的老鸟
04-03
213
http://blog.itpub.net/29829936/viewspace-2640084/ 本文主要介绍一些机器学习的基础概念和推导过程,并基于这些基础概念,快速地了解当下最热技术AI的核心基础-
神经网络
主要分为三大部分:
线性
回归
,
逻辑
回归
,
神经网络
。 首先看下机器学习的定义及常用的分类: 我们从一元
线性
回归
这个基...
机器学习入门30天实战
09-22
<p> <span> </span> </p> <p> <br /> </p> <p> 购买课程后,可扫码进入学习群<span style="font-family:"">,获取唐宇迪老师答疑</span> </p> <p> <img src="https://img-bss.csdn.net/201908070603599204.jpg" alt="" /> </p> <p> 系列课程包含Python机器学习库,机器学习经典算法原理推导,基于真实数据集案例实战3大模块。从入门开始进行机器学习原理推导,以通俗易懂为基础形象解读晦涩难懂的机器学习算法工作原理,案例实战中使用Python工具库从数据预处理开始一步步完成整个建模工作!具体内容涉及Python必备机器学习库、
线性
回归
算法原理推导、Python实现
逻辑
回归
与梯度下降、案例实战,信用卡欺诈检测、决策树与集成算法、支持向量机原理推导、SVM实例与贝叶斯算法、机器学习常规套路与Xgboost算法、
神经网络
。 </p>
机器学习笔记(三)——
线性
回归
、
逻辑
回归
、
神经网络
、SVM
D_pens的博客
07-26
78
原博客地址
轻松搞定八大机器学习算法
04-08
<p><span style="font-size: 18px;"><strong>【为什么学习机器学习算法?】</strong></span></p> <p style="text-align: left;"><span style="font-size: 14px;">人工智能是国家发展的战略,未来发展的必然趋势。</span></p> <p style="text-align: left;"><span style="font-size: 14px;">将来很多岗位终将被人工智能所代替,但人工智能人才只会越来越吃香。</span></p> <p style="text-align: left;"><span style="font-size: 14px;">中国人工智能人才缺口超过</span><span style="font-size: 14px;">500</span><span style="font-size: 14px;">万,人才供不应求。</span></p> <p style="text-align: left;"><span style="font-size: 16px;">要想掌握人工智能,机器学习是基础、是必经之路,也是极其重要的一步。</span></p> <p><span style="font-size: 18px;"><strong>【课程简介】</strong></span></p> <p><span style="font-size: 14px;">很多人认为机器学习难学,主要是因为其过于关注各种复杂数学公式的推导,从而忽略了公式的本质。</span></p> <p><span style="font-size: 14px;"> 本课程通过对课件的精心编排,课程内容的不断打磨,重磅推出机器学习8大经典模型算法,对晦涩难懂的数学公式,</span><br /><span style="font-size: 14px;"> 通过图形展示其特点和本质,快速掌握机器学习模型的核心理论,将重点
回归
到机器学习算法本身。</span></p> <p><span style="font-size: 14px;">本课程选取了机器学习经典的8大模型:</span></p> <p><span style="background-color: #2dc26b; color: #ffffff; font-size: 16px;">
线性
回归
、
逻辑
回归
、决策树、贝叶斯分类器、支持向量机(SVM)、集成学习、聚类以及降维</span></p> <p><span style="font-size: 14px;">再也不用东拼西凑,一门课程真正掌握机器学习核心技术。</span></p> <p><span style="font-size: 14px;"> 它们是人工智能必经之路,机器学习必学技术,企业面试必备技能。</span></p> <p><span style="font-size: 14px;"> </span></p> <p><span style="font-size: 14px;">《<span style="color: #e53333;">深度学习与
神经网络
从原理到实践</span>》课程现已上线,这使得人工智能学习路径更加完备,</span></p> <p><span style="font-size: 14px;">地址:<a href="https://edu.csdn.net/course/detail/29539">https://edu.csdn.net/course/detail/29539</a></span></p>
神经网络
多输出
回归
_为什么
线性
回归
也是
神经网络
weixin_36480255的博客
01-28
60
今天我们来讲讲
线性
回归
和
神经网络
的
关系
。首先说结论,
线性
回归
其实也是个
神经网络
,其实不光是
线性
回归
,多项式
回归
,
逻辑
回归
等等也都可以看成是一个
神经网络
。考虑到大家可能对
线性
回归
或者
神经网络
的概念有那么点疑惑,这里简单的讲讲什么是
线性
回归
和
神经网络
。如图所示,我们可以很轻易的看出来,y轴上的变量正随着x的变大而变大,这似乎是一个趋势,但是我们需要如何去描述这个趋势呢?我们不仅希望我们能够描述出这个趋...
©️2020 CSDN
皮肤主题: 技术黑板
设计师:CSDN官方博客
返回首页