Parameter是Tensor
的子类,同时拥有一种非常特殊的性质:当他们与Module S一起使用时,也就是说当它们作为Module
参数进行使用时,它们会自动添加到Module
的参数列表中,并且出现在parameters()
迭代器里。(这样就可以自动计算梯度等)
import torch.nn as nn
import torch
import math
import torch.nn.functional as F
import numpy as np
class NN_Network(nn.Module):
def __init__(self, in_dim, hidden_dim, out_dim):
super(NN_Network, self).__init__()
self.linear1 = nn.Linear(in_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, out_dim)
self.linear1.weight = torch.nn.Parameter(torch.zeros(in_dim,hidden_dim))
self.linear1.bias = torch.nn.Parameter(torch.ones(hidden_dim))
self.linear2.weight = torch.nn.Parameter(torch.zeros(hidden_dim,out_dim))
self.linear2.bias = torch.nn.Parameter(torch.ones(out_dim))
def forward(self,input):
out = self.linear1(input)
y_pred = self.linear2(out)
return y_pred
in_d = 5
hidn = 2
out_d = 3
net = NN_Network(in_d,hidn,out_d)
for param in net.parameters():
print(type(param),param.size())
# 计算网络参数的数目:
nb_param = 0
for param in net.parameters():
# print(f'params.data:{param.data}')
print(f'parms.data.size():{param.data.size()}')
print(f'list(param.data.size()):{list(param.data.size())}')
nb_param += np.prod(list(param.data.size()))
print(f'number of parameters:{nb_param}')
----------------------------------------------
res:
<class 'torch.nn.parameter.Parameter'> torch.Size([5, 2])
<class 'torch.nn.parameter.Parameter'> torch.Size([2])
<class 'torch.nn.parameter.Parameter'> torch.Size([2, 3])
<class 'torch.nn.parameter.Parameter'> torch.Size([3])
parms.data.size():torch.Size([5, 2])
list(param.data.size()):[5, 2]
parms.data.size():torch.Size([2])
list(param.data.size()):[2]
parms.data.size():torch.Size([2, 3])
list(param.data.size()):[2, 3]
parms.data.size():torch.Size([3])
list(param.data.size()):[3]
number of parameters:21
-------------------------------------------------