Spark读取路径及通配符使用

  1. spark-sql直接读取文件路径;
  2. spark-sql直接读取路径时, 使用通配符;
  3. saprk读取单个及多个路径

1 SparkContext方式读取文件

spark.sparkContext.textFile方法返回一个rdd。

1.1 单路径读取

在这里插入图片描述

val rdd=spark.sparkContext.textFile(path)

1.2 多路径读取

1) 方式01

val rdd=spark.sparkContext.textFile("D:\\data\\test_table\\*=1,D:\\data\\test_table\\key=2")

注意

  1. 每个路径都要定位到最后一级。
  2. 路径之间不能存在包含关系。
  3. 目录与文件不要混放,即放在同一个目录下。
  4. 路径中可使用通配符

2) 方式02

val path = "D:\\data\\test_table\\*=1"
val path2 = "D:\\data\\test_table\\*=2"
val arrPath = Array(path, path2)
val rdds = arrPath.map(spark.sparkContext.textFile(_))
val union_rdd = spark.sparkContext.union(rdds)

注意:路径规则同“上面的单路径读取”。

2 sparkSession方式读取文件

spark.read.textFile方法返回只有一列value的DataSet表。
spark.read.text方法返回只有一列value的DataFrame表。

2.1 单路径读取

val ds = spark.read.textFile(path)

2.2 多路径读取

val path = "D:\\data\\test_table=2\\*=1"
val path2 = "D:\\data\\test_table=2\\key=2"
val arrPath = Array(path, path2)
val ds = spark.read.textFile(arrPath:_*)

注意

  1. 每个路径都要定位到最后一级。
  2. 路径之间不能存在包含关系。
  3. 目录与文件不要混放,即放在同一个目录下。
  4. 路径中可使用通配符

3 通配符的使用

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值