时间序列:
预测股价、降水量等
平稳性:
样本数据(时间序列数据)有”惯性“
要求序列的均值和方差不发生明显变化
严平稳:分布情况不随时间的改变而改变
弱平稳:期望与相关系数(依赖性)不变【真实数据大多数是弱平稳的】
差分法:时间序列在t与t-1时刻的差值,使数据变的更加平稳
可做一阶差分,二阶差分…二阶差分是在一阶差分的基础上作差分
自回归模型(AR)
(1)描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测
(2)自回归模型必须满足平稳性要求(差分处理)
(3)p阶:表示时间间隔(与前p个值有关)
自回归模型限制:
ARIMA模型(时间序列)
最新推荐文章于 2024-09-26 23:01:36 发布
ARIMA模型是用于时间序列预测的重要工具,适用于预测股价、降水量等。该模型要求时间序列数据具备平稳性,通常通过差分处理实现。ARIMA结合了自回归(AR)和移动平均(MA)模型,其中AR描述当前值与历史值的关系,MA关注误差项的累加。模型评估涉及相关函数和差分次数(p, q, d),并需确保自相关性和随机波动的有效处理。"
116911793,10536336,解决红旗Linux Desktop5.0安装Firefox2.0时的libgobject-2.0.so.0缺失问题,"['Linux', '软件安装', '依赖管理', '系统配置']
摘要由CSDN通过智能技术生成